-
Notifications
You must be signed in to change notification settings - Fork 44
/
lmeval.py
154 lines (120 loc) · 4.78 KB
/
lmeval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import fnmatch
import json
import logging
import os
import sys
from main import quantize_model
from spqr_config import QuantizationConfig
sys.path.append("./lm-evaluation-harness")
import lm_eval.models
from lm_eval import evaluator, tasks, utils
try:
import wandb
wandb_installed = True
except ModuleNotFoundError:
wandb_installed = False
logging.getLogger("openai").setLevel(logging.WARNING)
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0:
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--quantization_args", default=None)
parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS))
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=int, default=None)
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--log_wandb", action="store_true")
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return list(task_names)
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.log_wandb:
wandb.init(config=args)
if args.limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
if args.tasks is None:
task_names = tasks.ALL_TASKS
else:
task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
if args.model_args is None:
args.model_args = ""
if args.quantization_args is None:
args.quantization_args = ""
quantization_config = None
else:
quantization_args = utils.simple_parse_args_string(args.quantization_args)
quantization_config = QuantizationConfig.from_dict(quantization_args)
lm = lm_eval.models.get_model(args.model).create_from_arg_string(
args.model_args, dict(batch_size=args.batch_size, device=args.device)
)
if hasattr(lm.model, "hf_device_map"):
print("Model device map:\n", lm.model.hf_device_map)
if quantization_config is not None:
assert lm.model.config.model_type in (
"llama",
"RefinedWebModel",
), "Quantization is implemented only for llama and falcon families"
lm.model.seqlen = 2048
_, wbits_avg = quantize_model(lm.model, quantization_config, args.device)
print(f"Average number of bits {wbits_avg:.2f}")
results = evaluator.simple_evaluate(
model=lm,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
device=args.device,
no_cache=True,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
log_wandb=args.log_wandb,
)
if not isinstance(results["config"]["model"], str):
results["config"]["model"] = results["config"]["model"].model.config._name_or_path
results["config"]["wbits_avg"] = wbits_avg
dumped = json.dumps(results, indent=2)
print(dumped)
if args.output_path:
with open(args.output_path, "w") as f:
f.write(dumped)
print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
)
print(evaluator.make_table(results))
if __name__ == "__main__":
main()