-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathobjectives.py
64 lines (49 loc) · 2.23 KB
/
objectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import theano.tensor as T
def cca_loss(outdim_size, use_all_singular_values):
"""
The main loss function (inner_cca_objective) is wrapped in this function due to
the constraints imposed by Keras on objective functions
"""
def inner_cca_objective(y_true, y_pred):
"""
It is the loss function of CCA as introduced in the original paper. There can be other formulations.
It is implemented by Theano tensor operations, and does not work on Tensorflow backend
y_true is just ignored
"""
r1 = 1e-4
r2 = 1e-4
eps = 1e-12
o1 = o2 = y_pred.shape[1]//2
# unpack (separate) the output of networks for view 1 and view 2
H1 = y_pred[:, 0:o1].T
H2 = y_pred[:, o1:o1+o2].T
m = H1.shape[1]
H1bar = H1 - (1.0 / m) * T.dot(H1, T.ones([m, m]))
H2bar = H2 - (1.0 / m) * T.dot(H2, T.ones([m, m]))
SigmaHat12 = (1.0 / (m - 1)) * T.dot(H1bar, H2bar.T)
SigmaHat11 = (1.0 / (m - 1)) * T.dot(H1bar, H1bar.T) + r1 * T.eye(o1)
SigmaHat22 = (1.0 / (m - 1)) * T.dot(H2bar, H2bar.T) + r2 * T.eye(o2)
# Calculating the root inverse of covariance matrices by using eigen decomposition
[D1, V1] = T.nlinalg.eigh(SigmaHat11)
[D2, V2] = T.nlinalg.eigh(SigmaHat22)
# Added to increase stability
posInd1 = T.gt(D1, eps).nonzero()[0]
D1 = D1[posInd1]
V1 = V1[:, posInd1]
posInd2 = T.gt(D2, eps).nonzero()[0]
D2 = D2[posInd2]
V2 = V2[:, posInd2]
SigmaHat11RootInv = T.dot(T.dot(V1, T.nlinalg.diag(D1 ** -0.5)), V1.T)
SigmaHat22RootInv = T.dot(T.dot(V2, T.nlinalg.diag(D2 ** -0.5)), V2.T)
Tval = T.dot(T.dot(SigmaHat11RootInv, SigmaHat12), SigmaHat22RootInv)
if use_all_singular_values:
# all singular values are used to calculate the correlation
corr = T.sqrt(T.nlinalg.trace(T.dot(Tval.T, Tval)))
else:
# just the top outdim_size singular values are used
[U, V] = T.nlinalg.eigh(T.dot(Tval.T, Tval))
U = U[T.gt(U, eps).nonzero()[0]]
U = U.sort()
corr = T.sum(T.sqrt(U[0:outdim_size]))
return -corr
return inner_cca_objective