Skip to content

Latest commit

 

History

History
334 lines (251 loc) · 54.4 KB

README_Pу́сский_язы́к.md

File metadata and controls

334 lines (251 loc) · 54.4 KB

English | 简体中文 | हिन्दी | 日本語 | 한국인 | Pу́сский язы́к

⚡️FastDeploy

Установка | Использование документации | API документация | Журнал обновления

⚡️FastDeploy- этовсесценарный,простой в использовании и гибкий,чрезвычайно эффективныйинструмент развертывания выводов ИИ. Он обеспечивает 📦из коробкиопыт развертывания с поддержкой более 🔥150+ текстовых,зрительных, речевых и кросс-модальных моделей и 🔚 сквозной оптимизацией производительности вывода. Сюда входят классификация изображений, обнаружение объектов, сегментация изображений, обнаружение лиц, распознавание лиц, обнаружение ключевых точек, распознавание ключей, OCR, NLP, TTS и другие задачи для удовлетворения потребностей разработчиков с многосценическими, многоаппаратными, многоплатформенными промышленными развертываниями.

Image Classification Object Detection Semantic Segmentation Potrait Segmentation
Image Matting Real-Time Matting OCR Face Alignment
Pose Estimation Behavior Recognition NLP Speech

input :早上好今天是2020
/10/29,最低温度是-3°C。

output:

Обмен сообществами

  • Slack:Join our Slack community and chat with other community members about ideas

  • WeChat: Отсканируйте QR-код и заполните анкету, чтобы присоединиться к техническому сообществу и обсудить болевые точки развертывания и решения с разработчиками сообщества

Каталог

🖥️ Развертывание на стороне сервера

Быстрый старт Python SDK (нажмите для получения подробной информации)

Быстрая установка

Предварительные зависимости
  • CUDA >= 11.2、cuDNN >= 8.0、Python >= 3.6
  • OS: Linux x86_64/macOS/Windows 10
Установка версии GPU
pip install numpy opencv-python fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
Установка CPU процессора
pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

Пример умозаключения в Python

  • Подготовка модели и изображений
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
  • Проверка результатов вывода
# GPU/TensorRT Справочник по развертыванию examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as vision

model = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
                                 "ppyoloe_crn_l_300e_coco/model.pdiparams",
                                 "ppyoloe_crn_l_300e_coco/infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im.copy())
print(result)

vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
C++ SDK Quick Start (нажмите для получения подробной информации)

Установка

Обратитесь к документации C++ prebuilt libraries download

Пример вывода в C++

  • Подготовка моделей и фотографий
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
  • Результаты рассуждений при тестировании
// GPU/TensorRT Ссылка на развертывание examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"

int main(int argc, char* argv[]) {
  namespace vision = fastdeploy::vision;
  auto model = vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel",
                                          "ppyoloe_crn_l_300e_coco/model.pdiparams",
                                          "ppyoloe_crn_l_300e_coco/infer_cfg.yml");
  auto im = cv::imread("000000014439.jpg");

  vision::DetectionResult res;
  model.Predict(&im, &res);

  auto vis_im = vision::Visualize::VisDetection(im, res, 0.5);
  cv::imwrite("vis_image.jpg", vis_im);
  return 0;
}

Дополнительные примеры развертывания см. в разделе [Примеры развертывания модели] (examples).

Список поддержки моделей на стороне сервера🔥🔥🔥🔥🔥

Описание символов: (1) ✅: Уже поддерживается; (2) ❔:Текущий; (3) N/A:В настоящее время не поддерживается;

Список поддержки моделей на стороне сервера (нажмите, чтобы уменьшить)
Сценарии миссий Модели Linux Linux Win Win Mac Mac Linux Linux Linux Linux Linux
--- --- X86 CPU NVIDIA GPU X86 CPU NVIDIA GPU X86 CPU Arm CPU AArch64 CPU Phytium D2000CPU NVIDIA Jetson Graphcore IPU Serving
Classification PaddleClas/ResNet50
Classification TorchVison/ResNet
Classification ultralytics/YOLOv5Cls
Classification PaddleClas/PP-LCNet
Classification PaddleClas/PP-LCNetv2
Classification PaddleClas/EfficientNet
Classification PaddleClas/GhostNet
Classification PaddleClas/MobileNetV1
Classification PaddleClas/MobileNetV2
Classification PaddleClas/MobileNetV3
Classification PaddleClas/ShuffleNetV2
Classification PaddleClas/SqueeezeNetV1.1
Classification PaddleClas/Inceptionv3
Classification PaddleClas/PP-HGNet
Detection PaddleDetection/PP-YOLOE
Detection PaddleDetection/PicoDet
Detection PaddleDetection/YOLOX
Detection PaddleDetection/YOLOv3
Detection PaddleDetection/PP-YOLO
Detection PaddleDetection/PP-YOLOv2
Detection PaddleDetection/Faster-RCNN
Detection PaddleDetection/Mask-RCNN
Detection Megvii-BaseDetection/YOLOX
Detection WongKinYiu/YOLOv7
Detection WongKinYiu/YOLOv7end2end_trt
Detection WongKinYiu/YOLOv7end2end_ort_
Detection meituan/YOLOv6
Detection ultralytics/YOLOv5
Detection WongKinYiu/YOLOR
Detection WongKinYiu/ScaledYOLOv4
Detection ppogg/YOLOv5Lite
Detection RangiLyu/NanoDetPlus
KeyPoint PaddleDetection/TinyPose
KeyPoint PaddleDetection/PicoDet + TinyPose
HeadPose omasaht/headpose
Tracking PaddleDetection/PP-Tracking
OCR PaddleOCR/PP-OCRv2
OCR PaddleOCR/PP-OCRv3
Segmentation PaddleSeg/PP-LiteSeg
Segmentation PaddleSeg/PP-HumanSegLite
Segmentation PaddleSeg/HRNet
Segmentation PaddleSeg/PP-HumanSegServer
Segmentation PaddleSeg/Unet
Segmentation PaddleSeg/Deeplabv3
FaceDetection biubug6/RetinaFace
FaceDetection Linzaer/UltraFace
FaceDetection deepcam-cn/YOLOv5Face
FaceDetection insightface/SCRFD
FaceAlign Hsintao/PFLD
FaceAlign Single430FaceLandmark1000
FaceAlign jhb86253817/PIPNet
FaceRecognition insightface/ArcFace
FaceRecognition insightface/CosFace
FaceRecognition insightface/PartialFC
FaceRecognition insightface/VPL
Matting ZHKKKe/MODNet
Matting PeterL1n/RobustVideoMatting
Matting PaddleSeg/PP-Matting
Matting PaddleSeg/PP-HumanMatting
Matting PaddleSeg/ModNet
Video Super-Resolution PaddleGAN/BasicVSR
Video Super-Resolution PaddleGAN/EDVR
Video Super-Resolution PaddleGAN/PP-MSVSR
Information Extraction PaddleNLP/UIE
NLP PaddleNLP/ERNIE-3.0
Speech PaddleSpeech/PP-TTS --

📲 Мобильное и конечное развертывание 🔥🔥🔥🔥

Список поддержки конечных моделей

Список поддержки конечных моделей (нажмите, чтобы уменьшить)
Сценарии миссий Модели Размер(MB) Linux Android Linux Linux Linux Linux Linux TBD...
--- --- --- ARM CPU ARM CPU Rockchip-NPU
RK3568/RK3588
Rockchip-NPU
RV1109/RV1126/RK1808
Amlogic-NPU
A311D/S905D/C308X
NXP-NPU
i.MX 8M Plus
TBD...|
Classification PaddleClas/ResNet50 98
Classification PaddleClas/PP-LCNet 11.9 -- -- --
Classification PaddleClas/PP-LCNetv2 26.6 -- -- --
Classification PaddleClas/EfficientNet 31.4 -- -- --
Classification PaddleClas/GhostNet 20.8 -- -- --
Classification PaddleClas/MobileNetV1 17 -- -- --
Classification PaddleClas/MobileNetV2 14.2 -- -- --
Classification PaddleClas/MobileNetV3 22 --
Classification PaddleClas/ShuffleNetV2 9.2 -- -- --
Classification PaddleClas/SqueezeNetV1.1 5 -- -- --
Classification PaddleClas/Inceptionv3 95.5 -- -- --
Classification PaddleClas/PP-HGNet 59 -- -- --
Detection PaddleDetection/PicoDet_s 4.9 --
Face Detection deepinsight/SCRFD 2.5 -- -- -- --
Keypoint Detection PaddleDetection/PP-TinyPose 5.5 --
Segmentation PaddleSeg/PP-LiteSeg(STDC1) 32.2 -- -- -- --
Segmentation PaddleSeg/PP-HumanSeg-Lite 0.556 -- -- -- --
Segmentation PaddleSeg/HRNet-w18 38.7 -- -- -- --
Segmentation PaddleSeg/PP-HumanSeg 107.2 -- -- -- --
Segmentation PaddleSeg/Unet 53.7 -- -- -- --
Segmentation PaddleSeg/Deeplabv3 150
OCR PaddleOCR/PP-OCRv2 2.3+4.4 -- -- -- --
OCR PaddleOCR/PP-OCRv3 2.4+10.6 --

🌐 🌐 Развертывание веб и апплетов

Список поддержки развертывания веб-приложений и апплетов (нажмите, чтобы уменьшить)
Сценарии миссий Модели web_demo
--- --- Paddle.js
Detection FaceDetection
Detection ScrewDetection
Segmentation PaddleSeg/HumanSeg
Object Recognition GestureRecognition
Object Recognition ItemIdentification
OCR PaddleOCR/PP-OCRv3

Acknowledge

Для создания и загрузки SDK в этом проекте используются бесплатные и открытые возможности в EasyEdge, за что мы хотели бы поблагодарить вас.

License

FastDeploy следует [протоколу Apache-2.0 с открытым исходным кодом](. /LICENSE).