diff --git a/README.md b/README.md index e09e5fe..c357d7c 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ # Shape Robust Text Detection with Progressive Scale Expansion Network ## Requirements -* python 2.7 +* Python 2.7 * PyTorch v0.4.1+ * pyclipper * Polygon2 @@ -20,21 +20,28 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model] ``` +## Eval script for ICDAR 2015 and SCUT-CTW1500 +``` +cd eval +sh eval_ic15.sh +sh eval_ctw1500.sh +``` + ## Performance (new version paper) ### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1) -| Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS | Model | +| Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS (1080Ti) | Model | | - | - | - | - | - | - | - | | PSENet-1s (ResNet50) | - | 81.49 | 79.68 | 80.57 | 1.6 | [baiduyun](https://pan.baidu.com/s/17FssfXd-hjsU5i2GGrKD-g)(extract code: rxti) | | PSENet-1s (ResNet50) | pretrain on IC17 MLT | 86.92 | 84.5 | 85.69 | 3.8 | [baiduyun](https://pan.baidu.com/s/1oKVxHKuT3hdzDUmksbcgAQ)(extract code: aieo) | | PSENet-4s (ResNet50) | pretrain on IC17 MLT | 86.1 | 83.77 | 84.92 | 3.8 | [baiduyun](https://pan.baidu.com/s/1oKVxHKuT3hdzDUmksbcgAQ)(extract code: aieo) | ### [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) -| Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS | Model | +| Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS ((1080Ti) | Model | | - | - | - | - | - | - | - | | PSENet-1s (ResNet50) | - | 80.57 | 75.55 | 78.0 | 3.9 | [baiduyun](https://pan.baidu.com/s/1BqJspFwBmHjoqlE0jOrJQg)(extract code: ksv7) | -| PSENet-1s (ResNet50) | pretrain on IC17 MLT | 84.84| 79.73 | 82.2 | 3.9 | todo | -| PSENet-4s (ResNet50) | pretrain on IC17 MLT | 82.09 | 77.84 | 79.9 | 8.4 | todo | +| PSENet-1s (ResNet50) | pretrain on IC17 MLT | 84.84| 79.73 | 82.2 | 3.9 | [baiduyun](https://pan.baidu.com/s/1zonNEABLk4ifseeJtQeS4w)(extract code: z7ac) | +| PSENet-4s (ResNet50) | pretrain on IC17 MLT | 82.09 | 77.84 | 79.9 | 8.4 | [baiduyun](https://pan.baidu.com/s/1zonNEABLk4ifseeJtQeS4w)(extract code: z7ac) | ## Performance (old version paper on arxiv) ### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1) (training with ICDAR 2017 MLT)