-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEDA.py
152 lines (115 loc) · 4.93 KB
/
EDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from ProbabilisticLogicSampling import PLS
import pandas as pd
import ast
class EDA:
generation = pd.DataFrame(columns=['string', 'amount'])
best_individual = 0
best_cost = 99999999999999
history_cost = []
best_local = 0
best_local_cost = 0
penalization = 9999999
# noise_model = 0
# coupling_map = 0
backend = 0
def __init__(self, statistics, size_gen, tsp_problem, alpha, it_max, it_dead, type):
self.stats = statistics
self.size_gen = size_gen
self.tsp_problem = tsp_problem
self.alpha = alpha
self.trunc_size = int(alpha * size_gen)
self.it_max = it_max
self.id_dead = it_dead
self.history_cost = []
self.type = type
def new_generation(self):
pls = PLS(statistics=self.stats, type=self.type)
if self.type == 'quantum':
# pls.noise_model = self.noise_model
# pls.coupling_map = self.coupling_map
pls.backend = self.backend
pls.sampling(shots=self.size_gen)
self.generation = pls.return_sols()
def translate_individual(self, string):
tam = len(self.stats)
sol = []
for i in range(tam):
aux = string[tam * i: tam * (i + 1)]
pos = 0
for j in range(tam):
if aux[j] == '1':
pos = j
sol.append(pos)
# print(string, sol)
return sol
def evaluation(self):
# evaluation with adjacency matrix
solutions = list(self.generation['string'])
self.generation['cost'] = 99999999999
self.generation['trans'] = 0
for sol in solutions:
translation = self.translate_individual(sol)
cost = self.tsp_problem.evaluate_solution(translation)
flag = 0
for i in range(len(self.stats)):
if i not in translation:
flag = flag + 1
if flag: # if not all cities in the path, then penalize
cost = cost + self.penalization * flag
self.generation.loc[self.generation.string == sol, 'cost'] = cost
self.generation.loc[self.generation.string == sol, 'trans'] = str(translation)
def truncation(self):
# selection of bests solutions
self.generation = self.generation.sort_values(by=['cost'])
self.generation['amount_acum'] = self.generation['amount'].cumsum()
self.generation = self.generation.reset_index()
del self.generation['index']
trunc_size = sum(self.generation['amount']) * self.alpha
self.trunc_size = trunc_size
aux = 0
for i in range(len(self.generation)):
if self.generation.loc[i, 'amount_acum'] >= trunc_size:
aux = i + 1
break
self.generation = self.generation[:aux]
self.generation.loc[aux - 1, 'amount'] = self.generation.loc[aux - 1, 'amount'] - \
(self.generation.loc[aux - 1]['amount_acum'] - trunc_size)
self.generation.loc[aux - 1, 'amount_acum'] = self.generation.loc[aux - 1]['amount_acum'] - \
(self.generation.loc[aux - 1]['amount_acum'] - trunc_size)
# self.generation = self.generation.nsmallest(trunc_size, 'cost')
def update_statistics(self):
keys = list(self.generation['string'])
tam_data, string_tam, tam_problem = len(keys), len(self.stats) ** 2, len(self.stats)
amounts = list(self.generation['amount'])
for i in range(string_tam): # string size loop
tot = 0
for j in range(tam_data): # solutions loop
if keys[j][i] == '1':
tot = tot + amounts[j]
self.stats[i % tam_problem][int(i / tam_problem)] = tot / self.trunc_size
def run(self, output=True):
no_improves = 0
array = []
for i in range(self.it_max):
self.new_generation()
self.evaluation()
self.truncation()
self.update_statistics()
# best individual update
self.best_local = self.generation.loc[0, 'trans']
self.best_local_cost = self.generation.loc[0, 'cost']
if self.best_local_cost < self.best_cost:
self.best_individual = self.generation.loc[0, 'trans']
array.append(ast.literal_eval(self.best_individual))
self.best_cost = self.best_local_cost
no_improves = 0
else:
no_improves = no_improves + 1
self.history_cost.append(self.best_local_cost)
if output:
print('[iteration ', i + 1, ']', self.best_local_cost, self.best_local)
# print(self.stats)
# print(self.generation)
if no_improves == self.id_dead:
break
return self.best_individual, self.best_cost, self.history_cost, array