Skip to content

Latest commit

 

History

History

dataset

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Data preparation guide

ScanNetV2 dataset

1) Download the ScanNetV2 dataset.

2) Put the downloaded scans and scans_test folder as follows.

ISBNet
├── dataset
│   ├── scannetv2
│   │   ├── scans
│   │   ├── scans_test

3) Split and preprocess data

cd ISBNet/dataset/scannetv2
bash prepare_data.sh

The script data into train/val/test folder and preprocess the data. After running the script the scannet dataset structure should look like below.

ISBNet
├── dataset
│   ├── scannetv2
│   │   ├── scans
│   │   ├── scans_test
│   │   ├── train
│   │   ├── val
│   │   ├── test
│   │   ├── superpoints

ScanNetV2-200 dataset

1) Download the new scannetv2-labels.combined.tsv from ScanNetV2 and put it to folder dataset/scannet200.

2) Split and preprocess data

cd ISBNet/dataset/scannet200
bash prepare_data.sh

The script data into train/val/test folder and preprocess the data. After running the script the scannet200 dataset structure should look like below.

ISBNet
├── dataset
│   ├── scannet200
│   │   ├── train
│   │   ├── val
│   │   ├── test
│   │   ├── superpoints

S3DIS dataset

1) Download the S3DIS dataset (v1.2_Aligned_Version).

2) Download the preprocessed superpoints from Box2Mask: superpoints and organize as below.

ISBNet
├── dataset
│   ├── s3dis
│   │   ├── Stanford3dDataset_v1.2_Aligned_Version
│   │   │   ├── Area_1
│   │   │   │   ├── hallway_1 
│   │   │   │   │   ├── Annotations # Contains instances information 
│   │   │   │   │   │   ├── door_2.txt 
│   │   │   │   │   │   ├── floor_1.txt
│   │   │   │   │   │   ├── wall_2.txt
│   │   │   │   │   │   ├── ...
│   │   │   │   │   ├── hallway_1.txt # Contains positions and colors of scene points
│   │   │   │   ├── office_1
│   │   │   │   ├── ...
│   │   │   ├── Area_2
│   │   │   ├── Area_3
│   │   │   ├── Area_4
│   │   │   ├── Area_5
│   │   │   ├── Area_6
│   │   ├── learned_superpoin_graph_segmentations

3) Preprocess data

cd ISBNet/dataset/s3dis
bash prepare_data.sh

After running the script the scannet dataset structure should look like below.

ISBNet
├── dataset
│   ├── s3dis
│   │   ├── Stanford3dDataset_v1.2_Aligned_Version
│   │   ├── learned_superpoin_graph_segmentations
│   │   ├── preprocess
│   │   ├── superpoints

STLPS3D dataset

1) Download the STPLS3D dataset.

2) Put Synthetic_v3_InstanceSegmentation.zip to dataset/stpls3d and unzip.

3) Preprocess data

cd ISBNet/dataset/stpls3d
bash prepare_data.sh

After running the script the scannet dataset structure should look like below.

ISBNet
├── dataset
│   ├── stpls3d
│   │   ├── train
│   │   ├── val