forked from TruongKhang/TopicFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
123 lines (106 loc) · 5.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import math
import argparse
import pprint
from distutils.util import strtobool
from pathlib import Path
from loguru import logger as loguru_logger
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.plugins import DDPPlugin
from src.config.default import get_cfg_defaults
from src.utils.misc import get_rank_zero_only_logger, setup_gpus
from src.utils.profiler import build_profiler
from src.lightning_trainer.data import MultiSceneDataModule
from src.lightning_trainer.trainer import PL_Trainer
loguru_logger = get_rank_zero_only_logger(loguru_logger)
def parse_args():
# init a costum parser which will be added into pl.Trainer parser
# check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'data_cfg_path', type=str, help='data config path')
parser.add_argument(
'main_cfg_path', type=str, help='main config path')
parser.add_argument(
'--exp_name', type=str, default='default_exp_name')
parser.add_argument(
'--batch_size', type=int, default=4, help='batch_size per gpu')
parser.add_argument(
'--num_workers', type=int, default=4)
parser.add_argument(
'--pin_memory', type=lambda x: bool(strtobool(x)),
nargs='?', default=True, help='whether loading data to pinned memory or not')
parser.add_argument(
'--ckpt_path', type=str, default=None,
help='pretrained checkpoint path, helpful for using a pre-trained coarse-only LoFTR')
parser.add_argument(
'--disable_ckpt', action='store_true',
help='disable checkpoint saving (useful for debugging).')
parser.add_argument(
'--profiler_name', type=str, default=None,
help='options: [inference, pytorch], or leave it unset')
parser.add_argument(
'--parallel_load_data', action='store_true',
help='load datasets in with multiple processes.')
parser = pl.Trainer.add_argparse_args(parser)
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
rank_zero_only(pprint.pprint)(vars(args))
# init default-cfg and merge it with the main- and data-cfg
config = get_cfg_defaults()
config.merge_from_file(args.main_cfg_path)
config.merge_from_file(args.data_cfg_path)
pl.seed_everything(config.TRAINER.SEED) # reproducibility
# TODO: Use different seeds for each dataloader workers
# This is needed for data augmentation
# scale lr and warmup-step automatically
args.gpus = _n_gpus = setup_gpus(args.gpus)
config.TRAINER.WORLD_SIZE = _n_gpus * args.num_nodes
config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * args.batch_size
_scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
config.TRAINER.SCALING = _scaling
config.TRAINER.TRUE_LR = config.TRAINER.CANONICAL_LR * _scaling
config.TRAINER.WARMUP_STEP = math.floor(config.TRAINER.WARMUP_STEP / _scaling)
# lightning module
profiler = build_profiler(args.profiler_name)
model = PL_Trainer(config, pretrained_ckpt=args.ckpt_path, profiler=profiler)
loguru_logger.info(f"Model LightningModule initialized!")
# lightning data
data_module = MultiSceneDataModule(args, config)
loguru_logger.info(f"Model DataModule initialized!")
# TensorBoard Logger
logger = TensorBoardLogger(save_dir='logs/tb_logs', name=args.exp_name, default_hp_metric=False)
ckpt_dir = Path(logger.log_dir) / 'checkpoints'
# Callbacks
# TODO: update ModelCheckpoint to monitor multiple metrics
ckpt_callback = ModelCheckpoint(monitor='auc@10', verbose=True, save_top_k=5, mode='max',
save_last=True,
dirpath=str(ckpt_dir),
filename='{epoch}-{auc@5:.3f}-{auc@10:.3f}-{auc@20:.3f}')
lr_monitor = LearningRateMonitor(logging_interval='step')
callbacks = [lr_monitor]
if not args.disable_ckpt:
callbacks.append(ckpt_callback)
# Lightning Trainer
trainer = pl.Trainer.from_argparse_args(
args,
plugins=DDPPlugin(find_unused_parameters=False,
num_nodes=args.num_nodes,
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0),
gradient_clip_val=config.TRAINER.GRADIENT_CLIPPING,
callbacks=callbacks,
logger=logger,
sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
replace_sampler_ddp=False, # use custom sampler
reload_dataloaders_every_epoch=False, # avoid repeated samples!
weights_summary='full',
profiler=profiler)
loguru_logger.info(f"Trainer initialized!")
loguru_logger.info(f"Start training!")
trainer.fit(model, datamodule=data_module)
if __name__ == '__main__':
main()