-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThreadPool.hpp
250 lines (207 loc) · 8.41 KB
/
ThreadPool.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#pragma once
#include <thread>
#include <condition_variable>
#include <mutex>
#include <future>
#include <deque>
#include <vector>
#include <memory>
#include <functional>
#include <type_traits>
//线程池
class ThreadPool
{
public:
using TaskType = std::function<void(void)>;
ThreadPool(const std::size_t theadSize = std::thread::hardware_concurrency() - 1);
~ThreadPool();
//线程池提交任务函数,优先以值拷贝形式传参,若参数无拷贝构造函数则自动以引用形式传参,若传参为引用需确保多线程参数的生命周期
//参数可用 std::ref 或 std::cref 包装以强制传递引用
//用于 普通函数、函数对象、lambda表达式、类的静态成员函数
template <typename F, typename... Args>
auto submit(F&& f, Args&&... args)->std::future<decltype(f(std::forward<Args&>(args)...))>;
//线程池提交任务函数,优先以值拷贝形式传参,若参数无拷贝构造函数则自动以引用形式传参,若传参为引用需确保多线程参数的生命周期
//参数可用 std::ref 或 std::cref 包装以强制传递引用
//用于 类的非静态成员函数
template<typename F, typename ObjPtr, typename... Args>
auto submit(F&& f, ObjPtr&& ptr, Args&&... args)->std::future<decltype((ptr->*f)(std::forward<Args&>(args)...))>;
//线程池批量提交任务函数,tuple中的对象优先以值拷贝形式传参,若参数无拷贝构造函数则自动以引用形式传参,若传参为引用需确保多线程参数的生命周期
//tuple中的对象可用 std::ref 或 std::cref 包装以强制传递引用
//使用于任何可调用对象(普通函数、函数对象、lambda表达式、类的静态成员函数、类的非静态成员函数)
template <typename... Args, typename ReturnType>
void submitInBatch(std::vector<std::tuple<Args...>>& functors, std::vector<std::future<ReturnType>>& taskFutures);
//关闭线程池
void shutDown();
std::size_t threadSize(void) const { return m_threadSize; }
private:
//线程池调度函数
void scheduled();
//仿函数参数包装器,使用 SFINAE 对有拷贝构造的左值进行值传递
template <typename T>
static T& functorParameterWrapper(T& value,
typename std::enable_if <std::is_copy_constructible<typename std::decay<T>::type>::value>::type* = nullptr)
{
return value;
}
//仿函数参数包装器,使用 SFINAE 对没有拷贝构造的左值, 若可以进行引用包装, 则包装为引用传递
template <typename T>
static std::reference_wrapper<T>
functorParameterWrapper(T& value,
typename std::enable_if<(std::is_object<typename std::decay<T>::type>::value || std::is_function<typename std::decay<T>::type>::value)
&& !std::is_copy_constructible<typename std::decay<T>::type>::value>::type* = nullptr)
{
return std::ref(value);
}
//仿函数参数包装器,使用 SFINAE 对有拷贝构造的右值进行完美转发
template <typename T>
static T&& functorParameterWrapper(T&& value,
typename std::enable_if<std::is_rvalue_reference<decltype(value)>::value &&
(std::is_copy_constructible<typename std::decay<T>::type>::value ||
std::is_move_constructible<typename std::decay<T>::type>::value)>::type* = nullptr)
{
return std::forward<T>(value);
}
//仿函数参数包装器,使用 SFINAE 对没有拷贝构造的右值, 若可以进行引用包装, 则包装为引用传递
template <typename T>
static std::reference_wrapper<T>
functorParameterWrapper(T&& value,
typename std::enable_if<std::is_rvalue_reference<decltype(value)>::value && (std::is_object<typename std::decay<T>::type>::value || std::is_function<typename std::decay<T>::type>::value)
&& !std::is_copy_constructible<typename std::decay<T>::type>::value && !std::is_move_constructible<typename std::decay<T>::type>::value>::type* = nullptr)
{
return std::cref(value);
}
//通过类模板的偏特化进行tuple拆解与任务对象组装
template <typename Tuple, typename ReturnType, bool Done, int Total, int... N>
struct wrapperTasksImpl
{
static std::function<void(void)> wrapper(Tuple&& t, std::future<ReturnType>& tskFuture)
{
return wrapperTasksImpl<Tuple, ReturnType, Total == 2 + sizeof...(N), Total, N..., sizeof...(N)>::wrapper(std::forward<Tuple>(t), tskFuture);
}
};
//通过类模板的偏特化进行tuple拆解与任务对象组装
template <typename Tuple, typename ReturnType, int Total, int... N>
struct wrapperTasksImpl<Tuple, ReturnType, true, Total, N...>
{
static std::function<void(void)> wrapper(Tuple&& t, std::future<ReturnType>& tskFuture)
{
auto tskFunc = std::bind(functorParameterWrapper(std::get<0>(std::forward<Tuple>(t))), functorParameterWrapper(std::get<N + 1>(std::forward<Tuple>(t)))...);
std::shared_ptr<std::packaged_task<decltype(tskFunc())(void)>> tskPtr = std::make_shared<std::packaged_task<decltype(tskFunc())(void)>>(std::move(tskFunc));
tskFuture = tskPtr->get_future();
std::function<void(void)> task = [tskPtr]() {(*tskPtr)(); };
return task;
}
};
//将tuple内的 可调用对象 及 参数 包装为 线程池任务对象
template <typename Tuple, typename ReturnType>
std::function<void(void)> wrapperTasksFromTuple(Tuple&& t, std::future<ReturnType>& tskFuture)
{
using tuple_type = typename std::decay<Tuple>::type;
return wrapperTasksImpl<Tuple, ReturnType, 1 == std::tuple_size<tuple_type>::value, std::tuple_size<tuple_type>::value>::wrapper(std::forward<Tuple>(t), tskFuture);
}
std::deque<TaskType> m_taskQue;
std::vector<std::thread> m_theadVec;
std::condition_variable cond_var;
std::mutex m_mu;
bool m_isShutDown;
std::size_t m_threadSize;
};
inline ThreadPool::ThreadPool(const std::size_t theadSize)
:m_isShutDown(false), m_threadSize(theadSize)
{
if (m_threadSize < 0 || m_threadSize > 7)
{
m_threadSize = 3;
}
m_theadVec.reserve(m_threadSize);
for (uint32_t i = 0; i < m_threadSize; i++)
{
m_theadVec.emplace_back(&ThreadPool::scheduled, this);
}
}
inline ThreadPool::~ThreadPool()
{
shutDown();
}
template<typename F, typename... Args> inline
auto ThreadPool::submit(F&& f, Args&& ...args) -> std::future<decltype(f(std::forward<Args&>(args)...))>
{
using functor_result_type = typename std::result_of<F& (Args&...)>::type;
std::function<functor_result_type(void)> funcTask = std::bind(functorParameterWrapper(std::forward<F>(f)), functorParameterWrapper(std::forward<Args>(args))...);
std::shared_ptr<std::packaged_task<functor_result_type(void)>> taskPtr = std::make_shared<std::packaged_task<functor_result_type(void)>>(funcTask);
TaskType wrapperTask = [taskPtr](void)->void { (*taskPtr)(); };
{
std::lock_guard<std::mutex> gurad(m_mu);
m_taskQue.push_back(wrapperTask);
}
cond_var.notify_one();
return taskPtr->get_future();
}
template<typename F, typename ObjPtr, typename... Args> inline
auto ThreadPool::submit(F&& f, ObjPtr&& ptr, Args&&... args) -> std::future<decltype((ptr->*f)(std::forward<Args&>(args)...))>
{
using functor_result_type = decltype((ptr->*f)(std::forward<Args&>(args)...));
std::function<functor_result_type(void)> funcTask = std::bind(functorParameterWrapper(std::forward<F>(f)), functorParameterWrapper(std::forward<ObjPtr>(ptr)), functorParameterWrapper(std::forward<Args>(args))...);
std::shared_ptr<std::packaged_task<functor_result_type(void)>> taskPtr = std::make_shared<std::packaged_task<functor_result_type(void)>>(funcTask);
TaskType wrapperTask = [taskPtr](void)->void { (*taskPtr)(); };
{
std::lock_guard<std::mutex> gurad(m_mu);
m_taskQue.push_back(wrapperTask);
}
cond_var.notify_one();
return taskPtr->get_future();
}
template<typename... Args, typename ReturnType> inline
void ThreadPool::submitInBatch(std::vector<std::tuple<Args...>>& functors, std::vector<std::future<ReturnType>>& taskFutures)
{
std::deque<std::function<void(void)>> tasks;
for (auto& functor : functors)
{
std::future<ReturnType> taskFuture;
tasks.emplace_back(wrapperTasksFromTuple(functor, taskFuture));
taskFutures.emplace_back(std::move(taskFuture));
}
{
std::lock_guard<std::mutex> guard(m_mu);
m_taskQue.insert(m_taskQue.end(), tasks.begin(), tasks.end());
}
if (tasks.size() == 1)
{
cond_var.notify_one();
}
else if (tasks.size() > 1)
{
cond_var.notify_all();
}
}
inline void ThreadPool::scheduled()
{
while (true)
{
std::unique_lock<std::mutex> guard(m_mu);
cond_var.wait(guard, [this]() {return !m_taskQue.empty() || m_isShutDown; });
if (m_isShutDown)
{
break;
}
auto task = m_taskQue.front();
m_taskQue.pop_front();
guard.unlock();
task();
}
}
inline void ThreadPool::shutDown()
{
{
std::lock_guard<std::mutex> gurad(m_mu);
m_isShutDown = true;
}
cond_var.notify_all();
for (std::size_t i = 0; i < m_threadSize; i++)
{
if (m_theadVec[i].joinable())
{
m_theadVec[i].join();
}
}
}