forked from JarFraud/FraudDetection
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtune_RUSBoost.m
35 lines (34 loc) · 1.8 KB
/
tune_RUSBoost.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tune hyperparameter (number of trees) for RUSBoost model %
% Our results are generated using Matlab R2020b on Windows 10 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% training period: 1991-1999, validating period: 2001
% evaluation metric: AUC
diary("tune_rusboost.txt");
year_valid = 2001;
for iters = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000] % parameter space to search
rng(0,'twister'); % fix random seed for reproducing the results
% read training data
fprintf('==> Validating RUSBoost-iters%d (training period: %d-%d, validating period: %d, with %d-year gap)...\n',iters, 1991, year_valid-2, year_valid, 2);
data_train = data_reader('data_FraudDetection_JAR2020.csv', 'data_default', 1991, year_valid-2);
y_train = data_train.labels;
X_train = data_train.features;
paaer_train = data_train.paaers;
% read validating data
data_valid = data_reader('data_FraudDetection_JAR2020.csv', 'data_default', year_valid, year_valid);
y_valid = data_valid.labels;
X_valid = data_valid.features;
paaer_valid = unique(data_valid.paaers(data_valid.labels~=0));
% handle serial frauds using PAAER
y_train(ismember(paaer_train,paaer_valid)) = 0;
% train model
t = templateTree('MinLeafSize',5); % base model
rusboost = fitensemble(X_train,y_train,'RUSBoost',iters,t,'LearnRate',0.1,'RatioToSmallest',[1 1]);
% validate model
[label_predict,dec_values] = predict(rusboost,X_valid);
dec_values = dec_values(:,2);
% print validation results
metrics = evaluate(y_valid,label_predict,dec_values,0.01);
fprintf('Number of Iterations/Trees: %d ==> AUC: %.4f \n', iters, metrics.auc);
end
diary off;