diff --git a/README.md b/README.md new file mode 100644 index 0000000..917b740 --- /dev/null +++ b/README.md @@ -0,0 +1,49 @@ + +# PPGN + +Codes for CIKM 2019 paper [Cross-Domain Recommendation via Preference Propagation GraphNet](https://doi.org/10.1145/3357384.3358166). + +## Citation + +Please cite our paper if you find this code useful for your research: + +``` +@inproceedings{cikm19:ppgn, + author = {Cheng Zhao and + Chenliang Li and + Cong Fu}, + title = {Cross-Domain Recommendation via Preference Propagation GraphNet}, + booktitle = {The 28th ACM International Conference on Information and Knowledge Management, {CIKM} 2019, Beijing, China, + November 3-7, 2019}, + pages = {2165--2168}, + year = {2019} +} +``` + +## Requirement +* Python 3.6 +* Tensorflow 1.10.0 +* Numpy +* Pandas +* Scipy + + +## Files in the folder +- `data/` + - `data_prepare.py`: constructing cross-domain scenario from overlapping users; + - `dataset.py`: defining the class of cross-domain dataset; +- `src/` + - `main.py`: the main function (including the configurations); + - `model.py`: the detail implementation of PPGN; + - `train.py`: training and evaluation; +- `utils` + - `metrics.py`: evaluation metrics. + + +## Running the code +1. Download the original data from [Amazon-5core](http://jmcauley.ucsd.edu/data/amazon/index.html), +choose two relevant categories (*e.g.*, Books, Movies and TV) and put them under the same directory in data/. + +2. run python data_prepare.py. + +3. run python main.py. \ No newline at end of file