forked from backtime92/CRAFT-Reimplementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg16_bn.py
68 lines (59 loc) · 2.65 KB
/
vgg16_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from collections import namedtuple
import torch
from torchvision import models
from torchvision.models.vgg import model_urls
from torchutil import *
import os
weights_folder = os.path.join(os.path.dirname(__file__) + '/../pretrain')
class vgg16_bn(torch.nn.Module):
def __init__(self, pretrained=True, freeze=False):
super(vgg16_bn, self).__init__()
model_urls['vgg16_bn'] = model_urls['vgg16_bn'].replace('https://', 'http://')
# vgg_pretrained_features = models.vgg16_bn(pretrained=pretrained).features
vgg_pretrained_features = models.vgg16_bn(pretrained=False)
if pretrained:
vgg_pretrained_features.load_state_dict(
copyStateDict(torch.load(os.path.join(weights_folder, '/data/CRAFT-pytorch/vgg16_bn-6c64b313.pth'))))
vgg_pretrained_features = vgg_pretrained_features.features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(12): # conv2_2
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 19): # conv3_3
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(19, 29): # conv4_3
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(29, 39): # conv5_3
self.slice4.add_module(str(x), vgg_pretrained_features[x])
# fc6, fc7 without atrous conv
self.slice5 = torch.nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6),
nn.Conv2d(1024, 1024, kernel_size=1)
)
if not pretrained:
init_weights(self.slice1.modules())
init_weights(self.slice2.modules())
init_weights(self.slice3.modules())
init_weights(self.slice4.modules())
init_weights(self.slice5.modules()) # no pretrained model for fc6 and fc7
if freeze:
for param in self.slice1.parameters(): # only first conv
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu2_2 = h
h = self.slice2(h)
h_relu3_2 = h
h = self.slice3(h)
h_relu4_3 = h
h = self.slice4(h)
h_relu5_3 = h
h = self.slice5(h)
h_fc7 = h
vgg_outputs = namedtuple("VggOutputs", ['fc7', 'relu5_3', 'relu4_3', 'relu3_2', 'relu2_2'])
out = vgg_outputs(h_fc7, h_relu5_3, h_relu4_3, h_relu3_2, h_relu2_2)
return out