平衡二叉树特点:对于任意一个节点,左子树和右子树的高度差不能超过1
下图就是一棵平衡二叉树:
- 标注节点的高度:(叶子节点的高度为1)
- 计算平衡因子:(这里是根据左子树高度减去右子树高度进行计算):
public class AVLTree<K extends Comparable<K>,V>{
private class Node{
public K key;
public V value;
public Node left,right;
public int height;
public Node(K key,V value){
this.key=key;
this.value=value;
this.left=null;
this.right=null;
//叶子节点的高度是1
height=1;
}
}
private Node root;
private int size;
public void add(K key, V value) {
root=add(root,key,value);
}
//计算节点的高度
private int getNodeHeight(Node node){
if(node==null){
return 0;
}
return node.height;
}
//获取节点的平衡因子,左子树高度-右子树高度
private int getBalancedFactor(Node node){
if(node==null){
return 0;
}
return getNodeHeight(node.left)-getNodeHeight(node.right);
}
private Node add(Node node,K key,V value){
if(node==null){
size++;
return new Node(key,value);
}
if(key.compareTo(node.key)<0){
node.left=add(node.left,key,value);
}else if(key.compareTo(node.key)>0){
node.right=add(node.right,key,value);
}else{
node.value=value;
}
//更新height
node.height=1+Math.max(getNodeHeight(node.left),getNodeHeight(node.right));
//计算平衡因子
int balancedFactor=getBalancedFactor(node);
if(Math.abs(balancedFactor)>1){
System.out.println("unblance:"+balancedFactor);
}
return node;
}
}
- 利用BST中序遍历性质,判断是否是BST
//检查该树是否是平衡二叉树
public boolean isBST(){
List<K> keys=new ArrayList<>();
inOrder(root,keys);
for(int i=1;i<keys.size();i++){
if(keys.get(i-1).compareTo(keys.get(i))>0){
return false;
}
}
return true;
}
private void inOrder(Node node, List<K> keys){
if(node==null){
return;
}
inOrder(node.left,keys);
keys.add(node.key);
inOrder(node.right,keys);
}
- 判断该树是否是平衡树
//判断该二叉树是否是一棵平衡二叉树
public boolean isBalancedTree(){
return isBalancedTree(root);
}
private boolean isBalancedTree(Node node){
if(node==null){
return true;
}
int balancedFactor=getBalancedFactor(node);
if(Math.abs(balancedFactor)>1){
return false;
}
return isBalancedTree(node.left) && isBalancedTree(node.right);
}
- AVL树的右旋转:插入的元素在不平衡的节点的左侧的左侧
- 右旋转针对的情况:以x、z为根节点的子树是平衡的BST树,添加一个元素以y为根节点的子树就不是平衡二叉树了
- 右旋转操作I:x.right=y
- 右旋转操作II:y.left=T3
- 右旋转之后,就是平衡的BST:假设z节点的高度是(h+1),可以验证以x为根节点的BST树是平衡树
- 代码实现:
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y){
Node x=y.left;
Node T3=x.right;
//向右旋转
x.right=y;
y.left=T3;
//维护树的高度
y.height=1 + Math.max(getNodeHeight(y.left),getNodeHeight(y.right));
x.height=1 + Math.max(getNodeHeight(x.left),getNodeHeight(x.right));
return x;
}
private Node add(Node node,K key,V value){
if(node==null){
size++;
return new Node(key,value);
}
if(key.compareTo(node.key)<0){
node.left=add(node.left,key,value);
}else if(key.compareTo(node.key)>0){
node.right=add(node.right,key,value);
}else{
node.value=value;
}
//更新height
node.height=1+Math.max(getNodeHeight(node.left),getNodeHeight(node.right));
//计算平衡因子
int balancedFactor=getBalancedFactor(node);
if(Math.abs(balancedFactor)>1){
System.out.println("unblance:"+balancedFactor);
}
//平衡维护-->右旋转
if(balancedFactor>1 && getBalancedFactor(node.left)>=0){
return rightRotate(node);
}
return node;
}
- AVL的左旋转
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y){
Node x=y.right;
Node T2=x.left;
//向左旋转
x.left=y;
y.right=T2;
//维护高度
y.height=1+Math.max(getNodeHeight(y.left),getNodeHeight(y.right));
x.height=1+Math.max(getNodeHeight(x.left),getNodeHeight(x.right));
return x;
}
private Node add(Node node,K key,V value){
if(node==null){
size++;
return new Node(key,value);
}
if(key.compareTo(node.key)<0){
node.left=add(node.left,key,value);
}else if(key.compareTo(node.key)>0){
node.right=add(node.right,key,value);
}else{
node.value=value;
}
//更新height
node.height=1+Math.max(getNodeHeight(node.left),getNodeHeight(node.right));
//计算平衡因子
int balancedFactor=getBalancedFactor(node);
if(Math.abs(balancedFactor)>1){
System.out.println("unblance:"+balancedFactor);
}
//平衡维护-->右旋转
if(balancedFactor>1 && getBalancedFactor(node.left)>=0){
return rightRotate(node);
}
if(balancedFactor<-1 && getBalancedFactor(node.right)<=0){
return leftRotate(node);
}
return node;
}
- LR
- RL
//计算平衡因子
int balancedFactor=getBalancedFactor(node);
/*if(Math.abs(balancedFactor)>1){
System.out.println("unblance:"+balancedFactor);
}*/
//平衡维护
//LL
if(balancedFactor>1 && getBalancedFactor(node.left)>=0){
return rightRotate(node);
}
//RR
if(balancedFactor<-1 && getBalancedFactor(node.right)<=0){
return leftRotate(node);
}
//LR
if(balancedFactor>1 && getBalancedFactor(node.left)<0){
Node x=node.left;
node.left=leftRotate(x);
//LL
return rightRotate(node);
}
//RL
if(balancedFactor<-1 && getBalancedFactor(node.right)>0){
Node x=node.right;
node.right=rightRotate(x);
//RR
return leftRotate(node);
}
//从AVL中删除值为key的元素
public V remove(K key) {
Node node=getNode(root,key);
if(node!=null){
root=del(root,key);
size--;
}
return null;
}
//获取Map中的最小的key
private Node min(Node node){
if(node.left==null){
return node;
}
return min(node.left);
}
//删除以node为根结点的Map中的key最小的元素
private Node delMin(Node node){
if(node.left==null){
Node nodeRight=node.right;
node.right=null;
size--;
return nodeRight;
}
node.left=delMin(node.left);
//更新height
node.height=1+Math.max(getNodeHeight(node.left),getNodeHeight(node.right));
//维护平衡
return keepBalance(node);
}
////删除以node为根结点的Map中的键值为key的元素
private Node del(Node node, K key){
if(node==null){
return null;
}
//记录删除元素后,该BST的新的根节点
Node retNode=null;
if(key.compareTo(node.key)<0){
node.left=del(node.left,key);
retNode=node;
}else if(key.compareTo(node.key)>0){
node.right=del(node.right,key);
retNode=node;
}else{
//节点node就是要删除的节点
//该节点只右有子树
if(node.left==null){
Node rightNode=node.right;
node.right=null;
size--;
retNode=rightNode;
}else if(node.right==null){ //该节点只有左子树
Node leftNode=node.left;
node.left=null;
size--;
retNode=leftNode;
}else{
//删除既有左子树又有右子树的节点
Node s=min(node.right);
s.right=delMin(node.right);
s.left=node.left;
//删除node
node.left=node.right=null;
retNode=s;
}
}
if(retNode==null){
return retNode;
}
//更新height
retNode.height=1+Math.max(getNodeHeight(retNode.left),getNodeHeight(retNode.right));
//保持平衡
return keepBalance(retNode);
}
//维护以node为根节点的二叉树是平衡二叉树
private Node keepBalance(Node node){
//计算平衡因子
int balancedFactor=getBalancedFactor(node);
//平衡维护
//LL
if(balancedFactor>1 && getBalancedFactor(node.left)>=0){
return rightRotate(node);
}
//RR
if(balancedFactor<-1 && getBalancedFactor(node.right)<=0){
return leftRotate(node);
}
//LR
if(balancedFactor>1 && getBalancedFactor(node.left)<0){
Node x=node.left;
node.left=leftRotate(x);
//LL
return rightRotate(node);
}
//RL
if(balancedFactor<-1 && getBalancedFactor(node.right)>0){
Node x=node.right;
node.right=rightRotate(x);
//RR
return leftRotate(node);
}
return node;
}
- AVLMap
public class AVLMap<K extends Comparable<K>,V> implements Map<K,V> {
private AVLTree<K,V> avlTree;
public AVLMap(){
avlTree=new AVLTree<>();
}
@Override
public void add(K key, V value) {
avlTree.add(key,value);
}
@Override
public V remove(K key) {
return avlTree.remove(key);
}
@Override
public boolean contains(K key) {
return avlTree.contains(key);
}
@Override
public V get(K key) {
return avlTree.get(key);
}
@Override
public void set(K key, V newValue) {
avlTree.set(key,newValue);
}
@Override
public int getSize() {
return avlTree.getSize();
}
@Override
public boolean isEmpty() {
return avlTree.isEmpty();
}
}
- AVLSet
public class AVLSet<K extends Comparable<K>> implements Set<K>{
private AVLTree<K,Object> avlTree;
public AVLSet(){
avlTree=new AVLTree<>();
}
@Override
public void add(K k) {
avlTree.add(k,null);
}
@Override
public void remove(K k) {
avlTree.remove(k);
}
@Override
public boolean contains(K k) {
return avlTree.contains(k);
}
@Override
public int getSize() {
return avlTree.getSize();
}
@Override
public boolean isEmpty() {
return avlTree.isEmpty();
}
}