Skip to content

Wangdai-0800/PSENet

Repository files navigation

News

We have upgraded PSENet from python2 to python3. You can find the old version here

Introduction

Official Pytorch implementations of PSENet [1].

[1] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao. Shape robust text detection with progressive scale expansion network. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages 9336–9345, 2019.

Recommended environment

Python 3.6+
Pytorch 1.1.0
torchvision 0.3
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install

pip install -r requirement.txt
./compile.sh

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/psenet/psenet_r50_ic15_736.py

Test

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

For example:

python test.py config/psenet/psenet_r50_ic15_736.py checkpoints/psenet_r50_ic15_736/checkpoint.pth.tar

Speed

python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --report_speed

For example:

python test.py config/psenet/psenet_r50_ic15_736.py checkpoints/psenet_r50_ic15_736/checkpoint.pth.tar --report_speed

Evaluation

Introduction

The evaluation scripts of ICDAR 2015 (IC15), Total-Text (TT) and CTW1500 (CTW) datasets.

Text detection

./eval_ic15.sh

Text detection

./eval_tt.sh

Text detection

./eval_ctw.sh

Benchmark

Results

ICDAR 2015

Method Backbone Scale Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 Shorter Side: 736 psenet_r50_ic15_736.py 83.6 74.0 78.5 Google Drive
PSENet ResNet50 Shorter Side: 1024 psenet_r50_ic15_1024.py 84.4 76.3 80.2 Google Drive
PSENet (paper) ResNet50 Longer Side: 2240 - 81.5 79.7 80.6 -

CTW1500

Method Backbone Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 psenet_r50_ctw.py 82.6 76.4 79.4 Google Drive
PSENet (paper) ResNet50 - 80.6 75.6 78 -

Total-Text

Method Backbone Config Precision (%) Recall (%) F-measure (%) Model
PSENet ResNet50 psenet_r50_tt.py 87.3 77.9 82.3 Google Drive
PSENet (paper) ResNet50 - 81.8 75.1 78.3 -

Citation

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

License

This work is developed and maintained by IMAGINE Lab@National Key Laboratory for Novel Software Technology, Nanjing University. IMAGINE Lab

This project is released under the Apache 2.0 license.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%