-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
executable file
·101 lines (86 loc) · 3.7 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import data as Data
import model as Model
import argparse
import logging
import core.logger as Logger
import core.metrics as Metrics
from core.wandb_logger import WandbLogger
from tensorboardX import SummaryWriter
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config/sr_sr3_64_512.json',
help='JSON file for configuration')
parser.add_argument('-p', '--phase', type=str, choices=['val'], help='val(generation)', default='val')
parser.add_argument('-gpu', '--gpu_ids', type=str, default=None)
parser.add_argument('-debug', '-d', action='store_true')
parser.add_argument('-enable_wandb', action='store_true')
parser.add_argument('-log_infer', action='store_true')
# parse configs
args = parser.parse_args()
opt = Logger.parse(args)
# Convert to NoneDict, which return None for missing key.
opt = Logger.dict_to_nonedict(opt)
# logging
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
Logger.setup_logger(None, opt['path']['log'],
'train', level=logging.INFO, screen=True)
Logger.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
logger = logging.getLogger('base')
logger.info(Logger.dict2str(opt))
tb_logger = SummaryWriter(log_dir=opt['path']['tb_logger'])
# Initialize WandbLogger
if opt['enable_wandb']:
wandb_logger = WandbLogger(opt)
else:
wandb_logger = None
# dataset
for phase, dataset_opt in opt['datasets'].items():
if phase == 'val':
val_set = Data.create_dataset(dataset_opt, phase)
val_loader = Data.create_dataloader(
val_set, dataset_opt, phase)
logger.info('Initial Dataset Finished')
# model
diffusion = Model.create_model(opt)
logger.info('Initial Model Finished')
diffusion.set_new_noise_schedule(
opt['model']['beta_schedule']['val'], schedule_phase='val')
logger.info('Begin Model Inference.')
current_step = 0
current_epoch = 0
idx = 0
result_path = '{}'.format(opt['path']['results'])
os.makedirs(result_path, exist_ok=True)
for _, val_data in enumerate(val_loader):
idx += 1
diffusion.feed_data(val_data)
diffusion.test(continous=True)
visuals = diffusion.get_current_visuals(need_LR=False)
hr_img = Metrics.tensor2img(visuals['HR']) # uint8
fake_img = Metrics.tensor2img(visuals['INF']) # uint8
sr_img_mode = 'grid'
if sr_img_mode == 'single':
# single img series
sr_img = visuals['SR'] # uint8
sample_num = sr_img.shape[0]
for iter in range(0, sample_num):
Metrics.save_img(
Metrics.tensor2img(sr_img[iter]), '{}/{}_{}_sr_{}.png'.format(result_path, current_step, idx, iter))
else:
# grid img
sr_img = Metrics.tensor2img(visuals['SR']) # uint8
Metrics.save_img(
sr_img, '{}/{}_{}_sr_process.png'.format(result_path, current_step, idx))
Metrics.save_img(
Metrics.tensor2img(visuals['SR'][-1]), '{}/{}_{}_sr.png'.format(result_path, current_step, idx))
Metrics.save_img(
hr_img, '{}/{}_{}_hr.png'.format(result_path, current_step, idx))
Metrics.save_img(
fake_img, '{}/{}_{}_inf.png'.format(result_path, current_step, idx))
if wandb_logger and opt['log_infer']:
wandb_logger.log_eval_data(fake_img, Metrics.tensor2img(visuals['SR'][-1]), hr_img)
if wandb_logger and opt['log_infer']:
wandb_logger.log_eval_table(commit=True)