forked from StonyBrookNLP/ircot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
1056 lines (933 loc) · 46.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Instantiates a base config with various HP combinations.
"""
import re
import os
import copy
import shutil
import json
import subprocess
import statistics
import itertools
from typing import Dict, List
import pandas as pd
import _jsonnet
import argparse
from lib import (
get_retriever_address,
get_llm_server_address,
infer_source_target_prefix,
get_config_file_path_from_name_or_path,
)
dataset_to_prompt_set_to_qids = {
"hotpotqa": {
"1": [
"5abb14bd5542992ccd8e7f07",
"5ac2ada5554299657fa2900d",
"5a758ea55542992db9473680",
"5ae0185b55429942ec259c1b",
"5a8ed9f355429917b4a5bddd",
"5abfb3435542990832d3a1c1",
"5ab92dba554299131ca422a2",
"5a835abe5542996488c2e426",
"5a89c14f5542993b751ca98a",
"5a90620755429933b8a20508",
"5a7bbc50554299042af8f7d0",
"5a8f44ab5542992414482a25",
"5add363c5542990dbb2f7dc8",
"5a7fc53555429969796c1b55",
"5a790e7855429970f5fffe3d",
],
"2": [
"5a90620755429933b8a20508",
"5a88f9d55542995153361218",
"5a758ea55542992db9473680",
"5a89c14f5542993b751ca98a",
"5abfb3435542990832d3a1c1",
"5a7bbc50554299042af8f7d0",
"5a77acab5542992a6e59df76",
"5a7fc53555429969796c1b55",
"5a8f44ab5542992414482a25",
"5a835abe5542996488c2e426",
"5ac2ada5554299657fa2900d",
"5a8ed9f355429917b4a5bddd",
"5a754ab35542993748c89819",
"5add363c5542990dbb2f7dc8",
"5abb14bd5542992ccd8e7f07",
],
"3": [
"5a89d58755429946c8d6e9d9",
"5a758ea55542992db9473680",
"5a7fc53555429969796c1b55",
"5a7bbc50554299042af8f7d0",
"5a77acab5542992a6e59df76",
"5a90620755429933b8a20508",
"5a89c14f5542993b751ca98a",
"5ab92dba554299131ca422a2",
"5a8f44ab5542992414482a25",
"5ae0185b55429942ec259c1b",
"5a835abe5542996488c2e426",
"5a754ab35542993748c89819",
"5ac2ada5554299657fa2900d",
"5a790e7855429970f5fffe3d",
"5adfad0c554299603e41835a",
],
},
"2wikimultihopqa": {
"1": [
"228546780bdd11eba7f7acde48001122",
"97954d9408b011ebbd84ac1f6bf848b6",
"a5995da508ab11ebbd82ac1f6bf848b6",
"1ceeab380baf11ebab90acde48001122",
"35bf3490096d11ebbdafac1f6bf848b6",
"f86b4a28091711ebbdaeac1f6bf848b6",
"f44939100bda11eba7f7acde48001122",
"e5150a5a0bda11eba7f7acde48001122",
"c6805b2908a911ebbd80ac1f6bf848b6",
"13cda43c09b311ebbdb0ac1f6bf848b6",
"f1ccdfee094011ebbdaeac1f6bf848b6",
"028eaef60bdb11eba7f7acde48001122",
"8727d1280bdc11eba7f7acde48001122",
"79a863dc0bdc11eba7f7acde48001122",
"c6f63bfb089e11ebbd78ac1f6bf848b6",
],
"2": [
"c6805b2908a911ebbd80ac1f6bf848b6",
"5897ec7a086c11ebbd61ac1f6bf848b6",
"028eaef60bdb11eba7f7acde48001122",
"af8c6722088b11ebbd6fac1f6bf848b6",
"1ceeab380baf11ebab90acde48001122",
"5811079c0bdc11eba7f7acde48001122",
"228546780bdd11eba7f7acde48001122",
"e5150a5a0bda11eba7f7acde48001122",
"f44939100bda11eba7f7acde48001122",
"f1ccdfee094011ebbdaeac1f6bf848b6",
"13cda43c09b311ebbdb0ac1f6bf848b6",
"79a863dc0bdc11eba7f7acde48001122",
"a5995da508ab11ebbd82ac1f6bf848b6",
"cdbb82ec0baf11ebab90acde48001122",
"c6f63bfb089e11ebbd78ac1f6bf848b6",
],
"3": [
"028eaef60bdb11eba7f7acde48001122",
"8727d1280bdc11eba7f7acde48001122",
"79a863dc0bdc11eba7f7acde48001122",
"4724c54e08e011ebbda1ac1f6bf848b6",
"e5150a5a0bda11eba7f7acde48001122",
"35bf3490096d11ebbdafac1f6bf848b6",
"a5995da508ab11ebbd82ac1f6bf848b6",
"228546780bdd11eba7f7acde48001122",
"97954d9408b011ebbd84ac1f6bf848b6",
"f44939100bda11eba7f7acde48001122",
"1ceeab380baf11ebab90acde48001122",
"f86b4a28091711ebbdaeac1f6bf848b6",
"c6f63bfb089e11ebbd78ac1f6bf848b6",
"af8c6722088b11ebbd6fac1f6bf848b6",
"5897ec7a086c11ebbd61ac1f6bf848b6",
],
},
"musique": {
"1": [
"2hop__804754_52230",
"2hop__292995_8796",
"2hop__496817_701819",
"2hop__154225_727337",
"2hop__642271_608104",
"2hop__439265_539716",
"2hop__195347_20661",
"2hop__131516_53573",
"2hop__427213_79175",
"3hop1__443556_763924_573834",
"2hop__782642_52667",
"2hop__861128_15822",
"4hop3__703974_789671_24078_24137",
"3hop1__61746_67065_43617",
"4hop3__463724_100414_35260_54090",
],
"2": [
"2hop__292995_8796",
"2hop__154225_727337",
"2hop__642271_608104",
"2hop__195347_20661",
"3hop1__61746_67065_43617",
"2hop__861128_15822",
"3hop1__753524_742157_573834",
"2hop__496817_701819",
"4hop3__703974_789671_24078_24137",
"3hop1__858730_386977_851569",
"2hop__804754_52230",
"2hop__782642_52667",
"2hop__102217_58400",
"2hop__387702_20661",
"3hop1__443556_763924_573834",
],
"3": [
"2hop__427213_79175",
"3hop1__753524_742157_573834",
"2hop__782642_52667",
"2hop__496817_701819",
"3hop1__443556_763924_573834",
"4hop3__463724_100414_35260_54090",
"2hop__292995_8796",
"2hop__804754_52230",
"3hop1__858730_386977_851569",
"2hop__131516_53573",
"2hop__387702_20661",
"4hop3__703974_789671_24078_24137",
"2hop__154225_727337",
"3hop1__61746_67065_43617",
"2hop__642271_608104",
],
},
"iirc": {
"1": [
"q_10344",
"q_10227",
"q_9591",
"q_3283",
"q_8776",
"q_8981",
"q_9518",
"q_1672",
"q_9499",
"q_8173",
"q_9433",
"q_8350",
"q_3268",
"q_8736",
"q_389",
],
"2": [
"q_9499",
"q_10236",
"q_2466",
"q_10270",
"q_8776",
"q_9591",
"q_10227",
"q_8981",
"q_9518",
"q_3290",
"q_8173",
"q_8736",
"q_10344",
"q_389",
"q_1672",
],
"3": [
"q_10344",
"q_10227",
"q_8776",
"q_3268",
"q_3283",
"q_10270",
"q_10236",
"q_8736",
"q_1672",
"q_3208",
"q_9433",
"q_8350",
"q_9591",
"q_8981",
"q_3290",
],
},
}
instantiation_schemes = {
"nor_qa": {},
"oner": {"bm25_retrieval_count": ["15"]},
"oner_qa": {
"bm25_retrieval_count": ["5", "7", "9", "11", "13", "15"],
"distractor_count": ['"1"', '"2"', '"3"'],
},
"ircot": {
"bm25_retrieval_count": ["2", "4", "6", "8"],
"distractor_count": ['"1"', '"2"', '"3"'],
},
"ircot_qa": {
"bm25_retrieval_count": ["2", "4", "6", "8"],
"distractor_count": ['"1"', '"2"', '"3"'],
},
}
def hash_str(string: str) -> str:
import hashlib
return str(int(hashlib.sha256(string.encode("utf-8")).hexdigest(), 16) % 10**8)
def verify_config(config_file_path: str) -> bool:
# Verifies that all the file_paths used in the config are available.
# If not, it prints a message of what's not available. This is to be run
# before the predict.py command.
import pandas as pd
env_variables = {}
retriever_address = get_retriever_address()
env_variables["RETRIEVER_HOST"] = str(retriever_address["host"])
env_variables["RETRIEVER_PORT"] = str(retriever_address["port"])
llm_server_address = get_llm_server_address()
env_variables["LLM_SERVER_HOST"] = str(llm_server_address["host"])
env_variables["LLM_SERVER_PORT"] = str(llm_server_address["port"])
config_json = json.loads(_jsonnet.evaluate_file(config_file_path, ext_vars=env_variables))
flattened_config_df = pd.json_normalize(config_json, sep=".")
flattened_config_dict = flattened_config_df.to_dict(orient="records")[0]
validate_paths = []
for key, value in flattened_config_dict.items():
assert isinstance(key, str)
if key.endswith(".prompt_file"):
if isinstance(value, str):
validate_paths.append(value)
else:
validate_paths += value
missing_paths = [validate_path for validate_path in validate_paths if not os.path.exists(validate_path)]
if missing_paths:
print(f"\nMissing path error in config: {config_file_path}")
for missing_path in missing_paths:
print(f"Missing prompt file_path : {missing_path}")
return not missing_paths
def instatiate_config(
content: str,
variable_replacements: Dict[str, str], # NOTE: It's updated in-place with evaluated replacements when required.
) -> str:
for variable_name, variable_value in variable_replacements.items():
assert isinstance(variable_value, str)
for invoked_variable_name in re.findall(r"\$[a-zA-Z0-9-_]+", variable_value):
invoked_variable_name = invoked_variable_name.lstrip("$")
assert (
invoked_variable_name in variable_replacements
), "Invoked a variable name replacement within another that's not available in the passed dict."
invoked_variable_value = variable_replacements[invoked_variable_name]
variable_value = variable_value.replace("$" + invoked_variable_name, invoked_variable_value)
if re.match(r"eval\(.+\)", variable_value):
# means it's a python expression that needs to be evaluated.
variable_value_ = re.sub(r"eval\((.+)\)", r"\1", variable_value)
variable_value = str(eval(variable_value_))
regex = re.compile(f"(.*local {variable_name} =) (.+?)(;.*)", re.DOTALL)
if not regex.match(content):
raise Exception(f"Variable name {variable_name} defined in the file.")
original_variable_value = re.sub(regex, r"\2", content)
if original_variable_value.strip() == "null":
raise Exception(
f"Looks like you're trying to replace variable ({variable_name}) that is set to be none. Likely an error."
)
variable_replacements[variable_name] = variable_value # Updated inplace.
content = re.sub(regex, r"\1 " + variable_value + r"\3", content)
return content
def infer_dataset(content: str) -> str:
regex = re.compile('.*local dataset = "(\w+)";.*', re.DOTALL)
if not regex.match(content):
raise Exception("Couldn't infer dataset from the config.")
return re.sub(regex, r"\1", content).strip()
def summarize_and_results(hyperparameter_metrics_data: List[Dict]) -> None:
for datum in hyperparameter_metrics_data:
complete = datum.pop("complete")
if not complete and datum["metric_value"] != "n/a":
datum["metric_value"] = "** " + str(datum["metric_value"]) + " **"
dataframe = pd.DataFrame(hyperparameter_metrics_data)
print(dataframe)
def are_file_contents_equal(file_path_1: str, file_path_2: str) -> bool:
with open(file_path_1, "r") as file:
content_1 = file.read().strip()
with open(file_path_2, "r") as file:
content_2 = file.read().strip()
return content_1 == content_2
def is_experiment_complete(
original_experiment_file_path: str, prediction_file_path: str, metrics_file_path: str, variable_replacements: str
):
if not os.path.exists(original_experiment_file_path):
return False
if not os.path.exists(prediction_file_path):
return False
if not os.path.exists(metrics_file_path):
return False
used_variable_replacements_file_path = os.path.join(
os.path.dirname(prediction_file_path),
os.path.splitext(os.path.split(prediction_file_path)[1])[0] + "_variable_replacements.json",
)
if not os.path.exists(used_variable_replacements_file_path):
used_variable_replacements = ""
else:
with open(used_variable_replacements_file_path, "r") as file:
used_variable_replacements = file.read().strip()
if json.loads(variable_replacements or "{}") != json.loads(used_variable_replacements or "{}"):
return False
used_experiment_file_path = os.path.join(
os.path.dirname(prediction_file_path),
"config__"
+ os.path.splitext(os.path.split(prediction_file_path)[1])[0].replace("prediction__", "")
+ ".jsonnet",
)
if os.path.exists(used_experiment_file_path):
if not are_file_contents_equal(original_experiment_file_path, used_experiment_file_path):
return False
with open(prediction_file_path, "r") as file:
# This is necessary because sometimes retriever stops working and as a result
# the whole thing returns empty results. (actually, need better detection for 'answer' type) .
predictions = json.load(file)
num_complete_items = sum([bool(value) for key, value in predictions.items()])
return num_complete_items / len(predictions) > 0.9
def main():
parser = argparse.ArgumentParser(description="Manager script for dealing with HP tuning.")
base_parser = argparse.ArgumentParser(add_help=False)
base_parser.add_argument("experiment_name_or_path", type=str, help="experiment_name_or_path")
base_parser.add_argument(
"--instantiation_scheme",
type=str,
help="instantiation_scheme",
choices=instantiation_schemes.keys(),
required=True,
)
base_parser.add_argument(
"--prompt_set", type=str, help="prompt_set", choices={"1", "2", "3", "aggregate"}, required=True
)
subparsers = parser.add_subparsers(title="Commands", metavar="", dest="command")
write_subparser = subparsers.add_parser(
"write", description="write files.", help="write files.", parents=[base_parser]
)
write_subparser.add_argument("--no_diff", action="store_true", help="don't show diff after writing the files.")
write_subparser.add_argument("--best", action="store_true", help="pick and write best performing HP config.")
write_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
write_subparser.add_argument(
"--variable_replacements",
type=str,
help="json string for jsonnet local variable replacements.",
default="",
)
subparsers.add_parser(
"diff",
description="show diff between original and new files.",
help="show diff between original and new files.",
parents=[base_parser],
)
subparsers.add_parser(
"verify",
description="verify all required prompt files exist.",
help="verify all required prompt files exist.",
parents=[base_parser],
)
print_subparser = subparsers.add_parser(
"print", description="print file names.", help="print file names.", parents=[base_parser]
)
print_subparser.add_argument("--best", action="store_true", help="print the best HP config.")
print_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
backup_subparser = subparsers.add_parser(
"backup", description="backup output directory.", help="backup output directory.", parents=[base_parser]
)
backup_subparser.add_argument("--force", action="store_true", help="remove backup first if it exists.")
print_backup_subparser = subparsers.add_parser(
"print_backup",
description="print backup output directory if it exists.",
help="print backup output directory if it exists.",
parents=[base_parser],
)
print_backup_subparser.add_argument("--force", action="store_true", help="remove original first if it exists.")
recover_backup_subparser = subparsers.add_parser(
"recover_backup",
description="recover backup output directory to original directory.",
help="recover backup output directory to original directory.",
parents=[base_parser],
)
recover_backup_subparser.add_argument("--force", action="store_true", help="remove original first if it exists.")
predict_subparser = subparsers.add_parser(
"predict",
description="run prediction on eval files.",
help="run prediction on eval files.",
parents=[base_parser],
)
predict_subparser.add_argument(
"--variable_replacements",
type=str,
help="json string for jsonnet local variable replacements.",
default="",
)
predict_subparser.add_argument("--silent", action="store_true", help="silent")
predict_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
predict_subparser.add_argument("--skip_if_exists", action="store_true", help="skip if final metrics/output exist.")
predict_subparser.add_argument("--use_backup", action="store_true", help="use backup output directory.")
predict_subparser.add_argument("--best", action="store_true", help="predict on the best HP config.")
predict_subparser.add_argument("--force", action="store_true", default=False, help="force predict if it exists")
subparsers.add_parser(
"delete_predictions",
description="delete predictions directory.",
help="delete predictions directory.",
parents=[base_parser],
)
track_subparser = subparsers.add_parser(
"track",
description="track progress of completion.",
help="track progress of completion.",
parents=[base_parser],
)
track_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
track_subparser.add_argument("--use_backup", action="store_true", help="use backup output directory.")
evaluate_subparser = subparsers.add_parser(
"evaluate",
description="evaluate prediction on eval files.",
help="evaluate prediction on eval files.",
parents=[base_parser],
)
evaluate_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
evaluate_subparser.add_argument("--use_backup", action="store_true", help="use backup output directory.")
evaluate_subparser.add_argument(
"--question-type-key-value", type=str, help="':' separated question-type-key-value.", default=None
)
evaluate_subparser.add_argument("--best", action="store_true", help="evaluate on the best HP config.")
evaluate_subparser.add_argument("--skip_if_exists", action="store_true", help="skip if final metrics/output exist.")
evaluate_subparser.add_argument(
"--only_print", action="store_true", default=False, help="only print don't run evaluation"
)
evaluate_subparser.add_argument(
"--official", action="store_true", default=False, help="use official eval scripts when available."
)
summarize_subparser = subparsers.add_parser(
"summarize",
description="summarize results of evaluation runs.",
help="summarize results of evaluation runs.",
parents=[base_parser],
)
summarize_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
summarize_subparser.add_argument("--use_backup", action="store_true", help="use backup output directory.")
summarize_subparser.add_argument("--best", action="store_true", help="summarize only the best HP config.")
summarize_subparser.add_argument(
"--variable_replacements",
type=str,
help="json string for jsonnet local variable replacements.",
default="",
)
summarize_subparser.add_argument(
"--official", action="store_true", default=False, help="use official eval scripts when available."
)
ground_truth_check_subparser = subparsers.add_parser(
"ground_truth_check",
description="prints head of all ground-turths to check equality.",
help="prints head of all ground-turths to check equality.",
parents=[base_parser],
)
ground_truth_check_subparser.add_argument("--evaluation_path", type=str, help="evaluation_path", required=False)
ground_truth_check_subparser.add_argument("--use_backup", action="store_true", help="use backup output directory.")
###
args = parser.parse_args()
# NOTE: The writing of best config for prompt_set 1 and the rest is fundamentally different.
# I always select the best hp-config based on prompt_set 1, but replace the prompt examples to use
# based on what prompt_set is passed. For prompt_set_1 I'll have __best suffix. For the rest, I'll have
# __best_p1_to_p2, and __best_p1_to_p3 suffixes. I know the naming is a bit odd, but due to legacy reasons.
config_filepath = get_config_file_path_from_name_or_path(args.experiment_name_or_path)
base_config_name = os.path.splitext(os.path.split(config_filepath)[1])[0]
hyperparameter_variations_directory = os.path.join("instantiated_configs")
os.makedirs(hyperparameter_variations_directory, exist_ok=True)
instantiation_scheme = instantiation_schemes[args.instantiation_scheme]
with open(config_filepath, "r") as file:
file_content = file.read().strip()
_prompt_set = "1" if args.prompt_set == "aggregate" else args.prompt_set
inferred_dataset = infer_dataset(file_content)
valid_qids = dataset_to_prompt_set_to_qids[inferred_dataset][_prompt_set]
variable_replacements = {}
if valid_qids is not None:
variable_replacements = {"valid_qids": json.dumps(valid_qids)}
# First replace the prompt set
names = [f"prompt_set_{_prompt_set}"] if valid_qids is not None else [""]
file_content = instatiate_config(content=file_content, variable_replacements=variable_replacements)
max_metric_value = float("-inf")
best_config_file_path = None
best_hyperparameters = None
complete_experiment_names = []
incomplete_experiment_names = []
hyperparameter_metrics_data = []
args_best_is_passed = hasattr(args, "best") and args.best
if args.prompt_set == "aggregate":
assert args.command == "summarize" and args_best_is_passed
# Then institate scheme-based variable replacements and update them.
local_file_contents = []
for values in [e for e in itertools.product(*list(instantiation_scheme.values()))]:
local_file_content = copy.deepcopy(file_content)
variable_replacements = {}
for key, value in zip(instantiation_scheme.keys(), values):
variable_replacements[key] = copy.deepcopy(value)
local_file_content = instatiate_config(content=local_file_content, variable_replacements=variable_replacements)
local_names = copy.deepcopy(names)
for key, value in variable_replacements.items():
# TODO: assert value doesn't have non-alphanumeric chars. If so, remove them.
value_name = value.replace('"', "")
local_names.append(f"{key}__{value_name}")
local_file_contents.append(local_file_content)
overall_local_name = "___".join(local_names).lstrip("_")
local_file_path = os.path.join(
hyperparameter_variations_directory, "____".join([base_config_name, overall_local_name]) + ".jsonnet"
)
local_file_path_basename = os.path.basename(local_file_path)
if len(local_file_path_basename) > 255:
local_file_path = os.path.join(
hyperparameter_variations_directory,
os.path.splitext(local_file_path_basename)[0][:237]
+ "__"
+ hash_str(local_file_path_basename)
+ ".jsonnet",
)
experiment_name = os.path.splitext(os.path.split(local_file_path)[1])[0]
prediction_directory = os.path.join("predictions", experiment_name)
evaluation_path = args.evaluation_path if hasattr(args, "evaluation_path") else None
if hasattr(args, "use_backup") and args.use_backup:
prediction_directory += "__backup"
metrics_file_path = "" # o/w vscode pylance complains.
if args.command in ("predict", "evaluate", "track", "summarize", "ground_truth_check") or args_best_is_passed:
if evaluation_path is None:
exit("Pass evaluation_path or set a default one in the hp_manager.")
prediction_file_name = os.path.splitext(os.path.basename(evaluation_path))[0]
prediction_file_name = infer_source_target_prefix(config_filepath, evaluation_path) + prediction_file_name
prediction_file_path = os.path.join(prediction_directory, "prediction__" + prediction_file_name + ".json")
evaluation_file_name = os.path.splitext(os.path.split(evaluation_path)[1])[0]
evaluation_file_name = infer_source_target_prefix(config_filepath, evaluation_path) + evaluation_file_name
ground_truth_file_path = os.path.join(
prediction_directory, "ground_truth__" + evaluation_file_name + ".json"
)
metrics_file_path = os.path.join(
prediction_directory, "evaluation_metrics__" + evaluation_file_name + ".json"
)
if args.command == "ground_truth_check" and not args_best_is_passed:
if not os.path.exists(ground_truth_file_path):
print(f"ground_turth file_path {ground_truth_file_path} not found.", flush=True)
continue
with open(ground_truth_file_path, "r") as file:
lines = file.readlines()
print("".join(lines[:10]), flush=True)
if args.command == "write" and not args.best:
print(f"Writing in {local_file_path}")
with open(local_file_path, "w") as file:
file.write(local_file_content)
if ((args.command == "diff") or (args.command == "write" and not args.no_diff)) and not args.best:
print("\n")
message = ">>> " + os.path.split(local_file_path)[1]
print("-" * len(message))
subprocess.call(f"colordiff {config_filepath} {local_file_path}", shell=True)
elif args.command == "print" and not args.best:
print(local_file_path)
elif args.command == "backup" and not args_best_is_passed:
assert not prediction_directory.endswith("__backup")
original_prediction_directory = prediction_directory
if not os.path.exists(original_prediction_directory):
print("original prediction directory doesn't exist. Skipping backup.")
continue
backup_prediction_directory = original_prediction_directory + "__backup"
if os.path.exists(backup_prediction_directory) and not args.force:
exit(f"Backup {backup_prediction_directory} already exists. Remove it or pass force to replace it.")
shutil.rmtree(backup_prediction_directory, ignore_errors=True)
shutil.move(original_prediction_directory, backup_prediction_directory)
print(f"Backing up {original_prediction_directory}")
elif args.command == "recover_backup" and not args_best_is_passed:
assert not prediction_directory.endswith("__backup")
original_prediction_directory = prediction_directory
backup_prediction_directory = original_prediction_directory + "__backup"
if not os.path.exists(backup_prediction_directory):
print("backup prediction directory doesn't exist. Skipping recovery.")
continue
if os.path.exists(original_prediction_directory) and not args.force:
exit(f"Original {original_prediction_directory} already exists. Remove it or pass force to replace it.")
shutil.rmtree(original_prediction_directory, ignore_errors=True)
shutil.move(backup_prediction_directory, original_prediction_directory)
print(f"Recovering backup {backup_prediction_directory}")
elif args.command == "print_backup" and not args_best_is_passed:
assert not prediction_directory.endswith("__backup")
original_prediction_directory = prediction_directory
backup_prediction_directory = original_prediction_directory + "__backup"
if os.path.exists(backup_prediction_directory):
print(backup_prediction_directory)
elif args.command == "verify" and not args_best_is_passed:
if not os.path.exists(local_file_path):
raise Exception("Looks like the instantiated config is not available. Make sure to 'write' it first.")
verify_config(local_file_path)
elif args.command == "predict" and not args_best_is_passed:
run_command = f"python predict.py {local_file_path} {evaluation_path}"
if args.silent:
run_command += " --silent"
if args.variable_replacements:
run_command += f" --variable-replacements '{args.variable_replacements}'"
if args.force:
run_command += " --force"
if not args.skip_if_exists:
print(run_command)
subprocess.call(run_command, shell=True)
else:
if not is_experiment_complete(
local_file_path, prediction_file_path, metrics_file_path, args.variable_replacements
):
print(run_command)
subprocess.call(run_command, shell=True)
elif args.command == "track" and not args_best_is_passed:
if is_experiment_complete(
local_file_path, prediction_file_path, metrics_file_path, args.variable_replacements
):
complete_experiment_names.append(experiment_name)
else:
incomplete_experiment_names.append(experiment_name)
elif args.command == "summarize" or args_best_is_passed:
if os.path.exists(metrics_file_path):
with open(metrics_file_path, "r") as file:
metrics = json.load(file)
hyperparameter_metrics_datum = {key: value for key, value in variable_replacements.items()}
if "para_recall" in metrics and "avg_predicted_paras" in metrics:
metric_value = "@".join(
[str(round(metrics["title_recall"] * 100, 1)), str(round(metrics["avg_predicted_titles"], 1))]
)
metric_value += " | "
metric_value += "@".join(
[str(round(metrics["para_recall"] * 100, 1)), str(round(metrics["avg_predicted_paras"], 1))]
)
else:
metric_value = " | ".join(
[ # Note that "|" is used to identify the first metric if required.
str(round(metrics["f1"] * 100, 1)), # First item will be used for knowing best HP.
str(round(metrics["precision"] * 100, 1)) if "precision" in metrics else "----",
str(round(metrics["recall"] * 100, 1)) if "recall" in metrics else "----",
str(metrics["count"]).rjust(5, " "),
]
)
hyperparameter_metrics_datum["metric_value"] = metric_value
hyperparameter_metrics_datum["complete"] = is_experiment_complete(
local_file_path, prediction_file_path, metrics_file_path, args.variable_replacements
)
hyperparameter_metrics_data.append(hyperparameter_metrics_datum)
else:
if args.command == "write" and args.best and "prompt_set_1" in metrics_file_path:
exit("The best HP config can't be identified as all exps are not complete yet.")
hyperparameter_metrics_datum = {key: value for key, value in variable_replacements.items()}
hyperparameter_metrics_datum["metric_value"] = "n/a"
hyperparameter_metrics_datum["complete"] = False
hyperparameter_metrics_data.append(hyperparameter_metrics_datum)
if args.command == "write" and args.best:
if "prompt_set_1" not in metrics_file_path:
# the best HP is only to be set based on prompt_set_1
best_config_file_path = None
best_hyperparameters = None
continue
metric_value = hyperparameter_metrics_datum["metric_value"]
if isinstance(metric_value, str):
metric_value_ = [e.strip() for e in metric_value.split("|")][0]
if "@" in metric_value_:
metric_value_ = metric_value_.split("@")[0].strip()
try:
metric_value_ = float(metric_value_)
except:
metric_value_ = metric_value
if not isinstance(metric_value_, (float, int)):
exit("The best HP config can't be identified as metric value is not a float/int.")
if metric_value_ > max_metric_value:
best_config_file_path = local_file_path
best_hyperparameters = copy.deepcopy(hyperparameter_metrics_datum)
best_hyperparameters.pop("metric_value")
max_metric_value = metric_value_
elif args.command == "evaluate" and not args_best_is_passed:
run_command = f"python evaluate.py {local_file_path} {evaluation_path}"
if os.path.exists(metrics_file_path) and args.skip_if_exists:
print(f"Skipping as the metrics file already exists here: {metrics_file_path}.")
continue
if args.question_type_key_value is not None:
run_command += f" --question-type-key-value {args.question_type_key_value}"
if args.only_print:
run_command += " --only-print"
if args.official:
run_command += " --official"
print(run_command)
subprocess.call(run_command, shell=True)
elif args.command == "summarize" and not args_best_is_passed:
pass
elif args.command == "delete_predictions":
print(f"Removing predictions for {experiment_name}")
shutil.rmtree(prediction_directory, ignore_errors=True)
if len(set(local_file_contents)) != len(local_file_contents):
raise Exception("Looks like some of the HP variations didn't lead to different output file content.")
if args.command == "track" and not args_best_is_passed:
all_experiment_names = complete_experiment_names + incomplete_experiment_names
completion_percentage = (
len(complete_experiment_names) / len(all_experiment_names) if all_experiment_names else 0.0
)
print("\nComplete Experiment Names:\n--------------------------")
print("\n".join(complete_experiment_names))
print("\nInComplete Experiment Names:\n----------------------------")
print("\n".join(incomplete_experiment_names))
print("\nOverall Stats:\n--------------")
print(
f"{len(complete_experiment_names)} / {len(all_experiment_names)} " f"({completion_percentage}) completed."
)
if args.command == "summarize" and not args_best_is_passed:
summarize_and_results(hyperparameter_metrics_data)
if args_best_is_passed and str(args.prompt_set) in ("1", "2", "3"):
source_target_prefix = infer_source_target_prefix(config_filepath, evaluation_path)
source_best_experiment_name = "____".join(
[base_config_name, args.instantiation_scheme, source_target_prefix + "best"]
)
if str(args.prompt_set) == "1":
target_best_experiment_name = source_best_experiment_name
else:
target_best_experiment_name = "____".join(
[base_config_name, args.instantiation_scheme, source_target_prefix + f"best_p1_to_p{args.prompt_set}"]
)
source_write_best_config_file_path = os.path.join(
hyperparameter_variations_directory, source_best_experiment_name + ".jsonnet"
)
target_write_best_config_file_path = os.path.join(
hyperparameter_variations_directory, target_best_experiment_name + ".jsonnet"
)
if args.command == "summarize" and args_best_is_passed and str(args.prompt_set) in ("1", "2", "3"):
official_prefix = "official_" if args.official else ""
metrics_file_path = os.path.join(
"predictions",
target_best_experiment_name,
official_prefix + "evaluation_metrics__" + evaluation_file_name + ".json",
)
if not os.path.exists(metrics_file_path):
metric_value = "n/a"
else:
with open(metrics_file_path, "r") as file:
metrics = json.load(file)
if "para_recall" in metrics and "avg_predicted_paras" in metrics:
metric_value = "@".join(
[str(round(metrics["title_recall"] * 100, 1)), str(round(metrics["avg_predicted_titles"], 1))]
)
metric_value += " | "
metric_value += "@".join(
[str(round(metrics["para_recall"] * 100, 1)), str(round(metrics["avg_predicted_paras"], 1))]
)
else:
metric_value = " | ".join(
[ # Note that "|" is used to identify the first metric if required.
str(round(metrics["f1"] * 100, 1)), # First item will be used for knowing best HP.
str(round(metrics["precision"] * 100, 1)) if "precision" in metrics else "----",
str(round(metrics["recall"] * 100, 1)) if "recall" in metrics else "----",
str(metrics["count"]).rjust(5, " "),
]
)
prediction_file_name = os.path.splitext(os.path.basename(evaluation_path))[0]
prediction_file_name = infer_source_target_prefix(config_filepath, evaluation_path) + prediction_file_name
prediction_directory = os.path.join("predictions", target_best_experiment_name)
prediction_file_path = os.path.join(prediction_directory, "prediction__" + prediction_file_name + ".json")
if not is_experiment_complete(
target_write_best_config_file_path, prediction_file_path, metrics_file_path, args.variable_replacements
):
metric_value = "** " + str(metric_value) + " **"
print(f"Best score => {metric_value}")
if args.command == "summarize" and args_best_is_passed and str(args.prompt_set) == "aggregate":
source_target_prefix = infer_source_target_prefix(config_filepath, evaluation_path)
prediction_file_name = os.path.splitext(os.path.basename(evaluation_path))[0]
prediction_file_name = infer_source_target_prefix(config_filepath, evaluation_path) + prediction_file_name
metric_values = []
has_incomplete_experiment = False
for _prompt_set in ("1", "2", "3"):
if str(_prompt_set) == "1":
target_best_experiment_name = "____".join(
[base_config_name, args.instantiation_scheme, source_target_prefix + "best"]
)
else:
target_best_experiment_name = "____".join(
[base_config_name, args.instantiation_scheme, source_target_prefix + f"best_p1_to_p{_prompt_set}"]
)
target_write_best_config_file_path = os.path.join(
hyperparameter_variations_directory, target_best_experiment_name + ".jsonnet"
)
official_prefix = "official_" if args.official else ""
metrics_file_path = os.path.join(
"predictions",
target_best_experiment_name,
official_prefix + "evaluation_metrics__" + evaluation_file_name + ".json",
)
if not os.path.exists(metrics_file_path):
metric_value = "n/a"
else:
with open(metrics_file_path, "r") as file:
metrics = json.load(file)
if "para_recall" in metrics and "avg_predicted_paras" in metrics:
metric_value = round(metrics["para_recall"] * 100, 1)
else:
metric_value = round(metrics["f1"] * 100, 1)
metric_values.append(metric_value)
prediction_directory = os.path.join("predictions", target_best_experiment_name)
prediction_file_path = os.path.join(prediction_directory, "prediction__" + prediction_file_name + ".json")
if not is_experiment_complete(
target_write_best_config_file_path, prediction_file_path, metrics_file_path, args.variable_replacements
):
has_incomplete_experiment = True
assert len(metric_values) == 3
if "n/a" in metric_values:
metric_value = "n/a"
else:
mean = round(statistics.mean(metric_values), 1)
std = round(statistics.stdev(metric_values), 1)
metric_value = f"{mean} | {std}"
if has_incomplete_experiment:
metric_value = "** " + str(metric_value) + " **"
print(f"Best score stats (mean|str) => {metric_value} << {metric_values}")
if args_best_is_passed and args.command == "write" and str(args.prompt_set) in ("1", "2", "3"):
if str(args.prompt_set) == "1":
print("Setting Best HP:")
for key, value in best_hyperparameters.items():
print(f" {key} => {value}")
print(f"Max metric value: {max_metric_value}\n")
print("Copying best HP config file_path")
print(f" from: {best_config_file_path}")
print(f" to: {source_write_best_config_file_path}")
shutil.copy(best_config_file_path, source_write_best_config_file_path)
else:
if not os.path.exists(source_write_best_config_file_path):
exit("Please save the best hp config with the prompt_set_1 first.")
assert best_hyperparameters is None
assert best_config_file_path is None
print(f"Copying Best HP for prompt-1 to prompt-{args.prompt_set} in:")
print(target_write_best_config_file_path)
variable_replacements = {"valid_qids": json.dumps(valid_qids)}
with open(source_write_best_config_file_path, "r") as file:
file_content = file.read().strip()
file_content = instatiate_config(content=file_content, variable_replacements=variable_replacements)
with open(target_write_best_config_file_path, "w") as file:
file.write(file_content)
# Most of the the code below is duplication, abstract it out into a function.
if args_best_is_passed and args.command == "print" and str(args.prompt_set) in ("1", "2", "3"):
print(f"Best HP filepath: {target_write_best_config_file_path}")
if args_best_is_passed and args.command in ("predict", "evaluate") and str(args.prompt_set) in ("1", "2", "3"):
if not os.path.exists(target_write_best_config_file_path):
exit(f"Best HP filepath {target_write_best_config_file_path} not found.")
prediction_directory = os.path.join("predictions", target_best_experiment_name)
if hasattr(args, "use_backup") and args.use_backup:
prediction_directory += "__backup"