-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
504 lines (411 loc) · 17.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import argparse
import numpy as np
import torch
import os
parser = argparse.ArgumentParser('ODE demo')
parser.add_argument('--method', type=str, choices=['dopri5', 'adams'], default='dopri5')
parser.add_argument('--seq_len', type=int, default=20)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument("--dataset", default="walker2d")
parser.add_argument('--adjoint', action='store_true')
parser.add_argument('--consider_noise', action='store_true')
parser.add_argument('--hard_truncate', action='store_true')
parser.add_argument('--num_var', type=int, default=1)
parser.add_argument('--study_obs', action='store_true')
args = parser.parse_args()
from train import ODEFunc
# from walker2d_data import load_dataset
import walker2d_data
import cheetah_data
if args.adjoint:
from torchdiffeq import odeint_adjoint as odeint
else:
from torchdiffeq import odeint
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu")
# device = "cpu"
batch_id = 0
time_delta = 0.1
# trainloader, testloader, in_features = load_dataset(seq_len=args.seq_len)
if args.dataset == "walker2d":
trainloader, testloader, in_features = walker2d_data.load_dataset(
seq_len=args.seq_len
)
low = torch.from_numpy(
np.array(
[
0.8306609392166138,
-0.629609227180481,
-1.1450262069702148,
-1.2276967763900757,
-1.2756223678588867,
-0.9984434843063354,
-1.2026487588882446,
-1.4123592376708984,
-2.2933568954467773,
-3.8838634490966797,
-10.0,
-10.0,
-10.0,
-10.0,
-10.0,
-10.0,
-10.0,
]
)
).to(device)
high = torch.from_numpy(
np.array(
[
1.6924704313278198,
0.9378023743629456,
0.1535143405199051,
0.16713030636310577,
1.2674068212509155,
0.2375510334968567,
0.18477311730384827,
1.2249037027359009,
5.372719764709473,
3.470100164413452,
10.0,
10.0,
10.0,
10.0,
10.0,
10.0,
10.0,
]
)
).to(device)
elif args.dataset == "halfcheetah":
trainloader, testloader, in_features = cheetah_data.load_dataset(
seq_len=args.seq_len
)
low = torch.from_numpy(
np.array(
[
-0.2936522662639618,
-0.29987457394599915,
-0.5890289545059204,
-0.7020226120948792,
-0.518144965171814,
-0.7397885918617249,
-0.841916024684906,
-0.6131184697151184,
-2.262007713317871,
-2.206634759902954,
-4.519010066986084,
-17.817516326904297,
-17.485055923461914,
-21.776256561279297,
-18.28421401977539,
-20.88571548461914,
-19.104284286499023,
]
)
).to(device)
high = torch.from_numpy(
np.array(
[
0.1298145353794098,
0.4833938181400299,
0.6584464311599731,
0.6455742120742798,
0.8780248761177063,
0.7083053588867188,
0.7404807209968567,
0.5502343773841858,
4.839046955108643,
2.9650542736053467,
4.737936019897461,
16.746498107910156,
22.432693481445312,
18.447025299072266,
22.226903915405273,
22.869461059570312,
15.584585189819336,
]
)
).to(device)
else:
raise ValueError(f"Unknown dataset '{args.dataset}'")
func = ODEFunc(in_features).to(device)
func_trunc = ODEFunc(in_features).to(device)
import matplotlib.pyplot as plt
plt.style.use('bmh')
fig = plt.figure(figsize=(8, 4), facecolor='white')
ax_safe = fig.add_subplot(111, frameon=False)
def visualize(torso, hip_joint, knee_left, knee_right, ankle_left, ankle_right, foot_left, foot_right, ii):
ax_safe.cla()
ax_safe.set_title('Trajectory')
ax_safe.set_xlabel('$x/m$')
ax_safe.set_ylabel('$y/m$')
ax_safe.plot([torso[0].cpu().numpy(), hip_joint[0].cpu().numpy()], [torso[1].cpu().numpy(), hip_joint[1].cpu().numpy()], 'r-')
ax_safe.plot([hip_joint[0].cpu().numpy(), knee_left[0].cpu().numpy()], [hip_joint[1].cpu().numpy(), knee_left[1].cpu().numpy()], 'g-')
ax_safe.plot([knee_left[0].cpu().numpy(), ankle_left[0].cpu().numpy()], [knee_left[1].cpu().numpy(), ankle_left[1].cpu().numpy()], 'g-')
ax_safe.plot([ankle_left[0].cpu().numpy(), foot_left[0].cpu().numpy()], [ankle_left[1].cpu().numpy(), foot_left[1].cpu().numpy()], 'g-')
ax_safe.plot([hip_joint[0].cpu().numpy(), knee_right[0].cpu().numpy()], [hip_joint[1].cpu().numpy(), knee_right[1].cpu().numpy()], 'b-')
ax_safe.plot([knee_right[0].cpu().numpy(), ankle_right[0].cpu().numpy()], [knee_right[1].cpu().numpy(), ankle_right[1].cpu().numpy()], 'b-')
ax_safe.plot([ankle_right[0].cpu().numpy(), foot_right[0].cpu().numpy()], [ankle_right[1].cpu().numpy(), foot_right[1].cpu().numpy()], 'b-')
ax_safe.axis('equal')
fig.tight_layout()
plt.savefig('./pics/pic{:03d}.png'.format(ii))
plt.draw()
plt.pause(0.001)
plt.show(block=False)
if args.dataset == "walker2d":
func.load_state_dict(torch.load(f"ckpt/walker2d_ep070.pth"))
func.eval()
func_trunc.load_state_dict(torch.load(f"ckpt_tunc/walker2d_ep020.pth"))
func_trunc.eval()
else:
func.load_state_dict(torch.load(f"ckpt/halfcheetah_ep140.pth"))
func.eval()
func_trunc.load_state_dict(torch.load(f"ckpt_tunc/halfcheetah_ep140.pth"))
func_trunc.eval()
total = len(testloader) - 1
with torch.no_grad():
test_losses = []
test_losses_ode = []
test_losses_trunc = []
min_inv, min_ode, min_trunc = [],[],[]
# for batch_y0, batch_t, batch_y in iter(testloader):
for batch_y0, batch_y in iter(trainloader):
batch_y0 = batch_y0.to(device)
################################################invariance collision avoidance video and figures - trainloader
# video generation with invariance
if args.study_obs:
func.study_obs = args.study_obs
batch_y0 = batch_y0[:,0,:]
batch_t = torch.linspace(
time_delta, args.seq_len * time_delta, args.seq_len).to(device)
batch_y = batch_y.to(device)
func.use_dcbf = True
batch_t = torch.tensor([0., 0.1]).to(device)
seq = batch_y.shape[1]
nbat = batch_y.shape[0]
pred_y = []
seq = 40 # manually change the total simulation step number
import gym
from gym.wrappers import Monitor
if args.dataset == "walker2d":
env = gym.make('Walker2d-v2')
else:
env = gym.make('HalfCheetah-v2')
env = Monitor(env, './gym', force=True)
env.reset()
if args.dataset == "walker2d":
j = 51 # pick one for generating video
y0 = batch_y0[j,:].clone()
y0[0] -= 0.1 # modify the initial condition
y0[9] *= 0.6
else:
j = 28
y0 = batch_y0[j,:].clone()
if args.dataset == "halfcheetah":
y0t = batch_y[j,:]
pred_yj = []
safety = [torch.tensor([1.69 - y0[0] - 0.3*y0[9]])]
height = []
pos_x = 0
for i in range(seq):
print('batch_id: ', batch_id, '/', total, 'seq: ', j, 'point: ', i)
func.pos_x = torch.tensor(pos_x).clone().detach()
pred = odeint(func, y0, batch_t, method = "fixed_adams") #
pred_yj.append(pred[-1,:].unsqueeze(0))
y0 = pred[-1,:]
################################ceiling
# b = 1.69 - pred[-1,0] - 0.3*pred[-1,9]
################################ball
b = (pos_x - 2)**2 + (y0[0]- 1.8)**2 - 0.6**2
b2 = (pos_x - 3)**2 + (y0[0]- 1.8)**2 - 0.6**2
b3 = (pos_x - 4)**2 + (y0[0]- 1.8)**2 - 0.6**2
safety.append(torch.min(torch.tensor([b,b2,b3])).unsqueeze(0))
height.append(y0[0].unsqueeze(0))
if args.dataset == "walker2d":
pos_x = pos_x + y0[8]*0.01
else:
pos_x = pos_x + y0[8]*0.1
qpos = np.concatenate([[pos_x], y0[:8].numpy()])
qvel = y0[8:].numpy()
env.set_state(qpos, qvel)
env.step(np.zeros((env.action_space.shape[0],)))
env.close()
pred_yj = torch.cat(pred_yj, dim = 0)
safety = torch.cat(safety, dim = 0)
height = torch.cat(height, dim = 0)
# video generate without invariance
y0 = batch_y0[j,:].clone()
y0[0] -= 0.1
y0[9] *= 0.6
pred_yj = []
safety2 = [torch.tensor([1.69 - y0[0] - 0.3*y0[9]])]
safety2 = []
func.use_dcbf = False
pos_x = 0
if args.dataset == "walker2d":
env = gym.make('Walker2d-v2')
else:
env = gym.make('HalfCheetah-v2')
env = Monitor(env, './gym_wo_inv', force=True)
env.reset()
for i in range(seq):
print('batch_id: ', batch_id, '/', total, 'seq: ', j, 'point: ', i)
pred = odeint(func, y0, batch_t)
pred_yj.append(pred[-1,:].unsqueeze(0))
y0 = pred[-1,:]
################################ceiling
# b = 1.69 - pred[-1,0] - 0.3*pred[-1,9]
################################ball
b = (pos_x - 2)**2 + (y0[0]- 1.8)**2 - 0.6**2
b2 = (pos_x - 3)**2 + (y0[0]- 1.8)**2 - 0.6**2
b3 = (pos_x - 4)**2 + (y0[0]- 1.8)**2 - 0.6**2
safety2.append(torch.min(torch.tensor([b,b2,b3])).unsqueeze(0))
pos_x = pos_x + y0[8]*0.01
qpos = np.concatenate([[pos_x], y0[:8].numpy()])
qvel = y0[8:].numpy()
env.set_state(qpos, qvel)
env.step(np.zeros((env.action_space.shape[0],)))
env.close()
pred_yj = torch.cat(pred_yj, dim = 0)
safety2 = torch.cat(safety2, dim = 0)
import matplotlib.pyplot as plt
plt.style.use('bmh')
fig = plt.figure(figsize=(8, 4), facecolor='white')
ax_safe = fig.add_subplot(111, frameon=False)
ax_safe.cla()
ax_safe.set_title('Safety portrait')
ax_safe.set_xlabel('time step')
ax_safe.set_ylabel('$b(x)$')
ax_safe.plot(safety.cpu().numpy(), 'g-', label = 'neural ODE + invariance')
ax_safe.plot(safety2.cpu().numpy(), 'r-', label = 'neural ODE')
ax_safe.plot([0, seq], [0,0], 'k--', label = 'safety boundary')
ax_safe.set_ylim(-0.4, 1)
ax_safe.set_xlim(-5, seq)
ax_safe.legend(loc ='upper right')
fig.tight_layout()
plt.savefig('safety{:03d}.pdf'.format(2))
plt.draw()
plt.pause(0.001)
plt.show(block=False)
exit()
#****************************************************************
else:
################################################invariance - joint limitation test
batch_y0 = batch_y0[:,0,:]
batch_t = torch.linspace(
time_delta, args.seq_len * time_delta, args.seq_len).to(device)
batch_y = batch_y.to(device)
func.use_dcbf = True
batch_t = torch.tensor([0., 0.1]).to(device)
seq = batch_y.shape[1]
nbat = batch_y.shape[0]
pred_y = []
for j in range(nbat):
y0 = batch_y0[j,:]
pred_yj = []
for i in range(seq):
print('batch_id: ', batch_id, '/', total, 'seq: ', j, 'point: ', i)
pred = odeint(func, y0, batch_t, method = "fixed_adams")
pred_yj.append(pred[-1,:].unsqueeze(0))
y0 = pred[-1,:]
pred_yj = torch.cat(pred_yj, dim = 0)
pred_y.append(pred_yj.unsqueeze(0))
pred_y = torch.cat(pred_y, dim=0)
loss = torch.mean(torch.abs(pred_y - batch_y)).detach().cpu().item()
min1 = torch.min(high - pred_y).unsqueeze(0)
min2 = torch.min(pred_y - low).unsqueeze(0)
min0 = torch.cat([min1,min2], dim = 0)
min_inv.append(min0)
test_losses.append(loss)
print(f"Invarince Test_loss ={np.mean(test_losses):0.4g}")
##################################################neural ODE
batch_t = torch.linspace(
time_delta, args.seq_len * time_delta, args.seq_len).to(device)
func.use_dcbf = False
pred_y = odeint(func, batch_y0, batch_t)
pred_y = torch.transpose(pred_y, 0, 1)
loss = torch.mean(torch.abs(pred_y - batch_y)).detach().cpu().item()
min1 = torch.min(high - pred_y).unsqueeze(0)
min2 = torch.min(pred_y - low).unsqueeze(0)
min0 = torch.cat([min1,min2], dim = 0)
min_ode.append(min0)
test_losses_ode.append(loss)
print(f"neural ODE Test_loss ={np.mean(test_losses_ode):0.4g}")
##################################################hard trunc
func_trunc.use_dcbf = False
pred_y = odeint(func_trunc, batch_y0, batch_t)
pred_y = torch.transpose(pred_y, 0, 1)
trunc_y = torch.clip(pred_y, low, high)
loss = torch.mean(torch.abs(trunc_y - batch_y)).detach().cpu().item()
min1 = torch.min(high - pred_y).unsqueeze(0)
min2 = torch.min(pred_y - low).unsqueeze(0)
min0 = torch.cat([min1,min2], dim = 0)
min_trunc.append(min0)
test_losses_trunc.append(loss)
print(f"hard trunc Test_loss ={np.mean(test_losses_trunc):0.4g}")
batch_id = batch_id + 1
if(batch_id == 10):
break
min_inv = torch.cat(min_inv, dim = 0)
min_ode = torch.cat(min_ode, dim = 0)
min_trunc = torch.cat(min_trunc, dim = 0)
print(f"inv safety ={torch.min(min_inv).cpu().item():0.4g}")
print(f"ode safety ={torch.min(min_ode).cpu().item():0.4g}")
print(f"trunc safety ={torch.min(min_trunc).cpu().item():0.4g}")
###########################################################################Batch test
# with torch.no_grad():
# test_losses = []
# test_losses_ode = []
# test_losses_trunc = []
# # for batch_y0, batch_t, batch_y in iter(testloader):
# for batch_y0, batch_y in iter(testloader):
# batch_y0 = batch_y0.to(device)
# ################################################invariance
# batch_y0 = batch_y0[:,0,:]
# batch_t = torch.linspace(
# time_delta, args.seq_len * time_delta, args.seq_len).to(device)
# batch_y = batch_y.to(device)
# func.use_dcbf = True
# batch_t = torch.tensor([0., 0.1]).to(device)
# seq = batch_y.shape[1]
# nbat = batch_y.shape[0]
# pred_y = []
# for j in range(nbat):
# y0 = batch_y0[j,:]
# pred_yj = []
# for i in range(seq):
# print('batch_id: ', batch_id, '/', total, 'seq: ', j, 'point: ', i)
# pred = odeint(func, y0, batch_t)
# pred_yj.append(pred[-1,:].unsqueeze(0))
# y0 = pred[-1,:]
# pred_yj = torch.cat(pred_yj, dim = 0)
# pred_y.append(pred_yj.unsqueeze(0))
# pred_y = torch.cat(pred_y, dim=0)
# loss = torch.mean(torch.abs(pred_y - batch_y)).detach().cpu().item()
# test_losses.append(loss)
# print(f"Invarince Test_loss ={np.mean(test_losses):0.4g}")
# ##################################################neural ODE
# batch_t = torch.linspace(
# time_delta, args.seq_len * time_delta, args.seq_len).to(device)
# func.use_dcbf = False
# pred_y = odeint(func, batch_y0, batch_t)
# pred_y = torch.transpose(pred_y, 0, 1)
# loss = torch.mean(torch.abs(pred_y - batch_y)).detach().cpu().item()
# test_losses_ode.append(loss)
# print(f"neural ODE Test_loss ={np.mean(test_losses_ode):0.4g}")
# ##################################################hard trunc
# func_trunc.use_dcbf = False
# pred_y = odeint(func_trunc, batch_y0, batch_t)
# pred_y = torch.transpose(pred_y, 0, 1)
# trunc_y = torch.clip(pred_y, low, high)
# loss = torch.mean(torch.abs(trunc_y - batch_y)).detach().cpu().item()
# test_losses_trunc.append(loss)
# print(f"hard trunc Test_loss ={np.mean(test_losses_trunc):0.4g}")
# batch_id = batch_id + 1
# print(f"Invarince Test_loss ={np.mean(test_losses):0.4g}")
# print(f"Invarince Test_loss_std ={np.std(test_losses):0.4g}")
# print(f"neural ODE Test_loss ={np.mean(test_losses_ode):0.4g}")
# print(f"neural ODE Test_loss_std ={np.std(test_losses_ode):0.4g}")
# print(f"hard trunc Test_loss ={np.mean(test_losses_trunc):0.4g}")
# print(f"hard trunc Test_loss_std ={np.std(test_losses_trunc):0.4g}")