You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2.1 Evaluation on the Prostate158+ProstateX dataset for prostate anatomy segmentation
Model
DSC(%)
HD
ASD
(baseline) 3D U-Net+DiceCELoss
81.27
19.61
2.25
3D U-Net+3DBoundaryDoULoss
81.33
19.56
2.20
3D U-Net+AWA+DiceCELoss
81.38
19.33
2.21
(ours) 3D U-Net+AWA+3DBoundaryDoULoss
81.47
19.17
2.18
2.2 Evaluation on the PI-CAI dataset for prostate lesion segmentation
Model
Fold1
Fold2
Fold3
Fold4
Fold5
Mean
(baseline) ITUNet+FocalLoss
46.99
43.34
40.80
52.52
49.01
46.53
ITUNet+2DBoundaryDoULoss
45.51
44.03
45.93
55.16
54.50
49.03
ITUNet+AWA+FocalLoss
47.86
42.74
46.30
53.78
52.13
48.56
ITUNet+CZPZ+FocalLoss
49.22
46.44
46.31
53.78
50.51
49.25
(ours) ITUNet+AWA+CZPZ+2DBoundaryDoULoss
49.50
49.69
48.46
57.90
53.05
51.72
2.3 Comparison between AWA and WSO
Anatomy Segmentation :
Model
DSC(%)
HD
ASD
3D U-Net
81.27
19.61
2.25
3D U-Net+WSO(ReLU)
80.64
19.96
2.33
3D U-Net+WSO(Sigmoid)
81.06
19.59
2.26
3D U-Net+AWA
81.38
19.33
2.21
Lesion Segmentation :
Model
Fold1
Fold2
Fold3
Fold4
Fold5
Mean
ITUNet
46.99
43.34
40.80
52.52
49.01
46.53
ITUNet+WSO(ReLU)
44.59
43.13
38.12
53.01
49.09
45.59
ITUNet+WSO(Sigmoid)
45.34
42.36
40.09
54.10
49.59
46.30
ITUNet+AWA
47.86
42.74
46.30
53.78
52.13
48.56
2.4 Parameter count and FLOPs
Input Shape
Model
Params
FlOPs
1×1×96×96×96
WSO
2
0.88M
1×1×96×96×96
AWA
0.03M
0.12G
1×1×96×96×96
3D U-Net
38.17M
15.88G
1×3×384×384
WSO
6
0.44M
1×3×384×384
AWA
0.10M
0.31G
1×3×384×384
ITUnet
18.13M
32.67G
2.5 Applicability of the AWA module in SwinUNETR and UNETR
Dataset
Model
DSC(%)
PI-CAI (Fold 1)
(2D)SwinUNETR
48.73
PI-CAI (Fold 1)
(2D)SwinUNETR+AWA
48.99
PI-CAI (Fold 1)
(2D)UNETR
38.59
PI-CAI (Fold 1)
(2D)UNETR+AWA
41.83
Prostate158+ProstateX
(3D)SwinUNETR
80.57
Prostate158+ProstateX
(3D)SwinUNETR+AWA
80.61
Prostate158+ProstateX
(3D)UNETR
77.95
Prostate158+ProstateX
(3D)UNETR+AWA
78.34
2.6 Applicability of the AWA module on the MSD dataset
Dataset
Model
Fold1
Fold2
Fold3
Fold4
Fold5
Mean
Task02_Heart (MRI)
3D U-Net
92.53
90.57
90.27
89.92
92.85
91.23
Task02_Heart (MRI)
3D U-Net+AWA
92.53
90.54
90.44
91.18
92.59
91.46
Task03_Liver (CT)
3D U-Net
76.61
72.10
72.31
72.11
75.89
73.80
Task03_Liver (CT)
3D U-Net+AWA
80.31
75.40
75.95
73.86
79.80
77.06
Task08_HepaticVessel (CT)
3D U-Net
54.53
56.32
55.26
56.73
57.43
56.05
Task08_HepaticVessel (CT)
3D U-Net+AWA
57.03
57.65
57.76
60.16
58.35
58.19
Task09_Spleen (CT)
3D U-Net
95.12
93.26
94.30
90.47
94.64
93.56
Task09_Spleen (CT)
3D U-Net+AWA
96.04
95.33
95.04
93.69
95.71
95.16
2.7 Comparison Boundary DoU Loss with other loss functions
Anatomy Segmentation :
Model
Loss
DSC(%)
HD
ASD
3D U-Net
DiceCELoss
81.27
19.61
2.25
3D U-Net
TverskyLoss
77.04
29.12
9.60
3D U-Net
BoundaryLoss
81.47
19.17
2.18
3D U-Net
BoundaryDoULoss
77.98
22.23
4.34
Lesion Segmentation :
Model
Loss
Fold1
Fold2
Fold3
Fold4
Fold5
Mean
ITUNet
FocalLoss
46.99
43.34
40.80
52.52
49.01
46.53
ITUNet
TverskyLoss
42.84
40.41
38.37
53.09
47.82
44.51
ITUNet
BoundaryLoss
46.90
42.01
41.73
54.93
51.17
47.35
ITUNet
BoundaryDoULoss
45.51
44.03
45.93
55.16
54.50
49.03
2.8. Hyperparameter perturbation experiments
Comparison experiments of our proposed method
(ITUNet+AWA+CZPZ+2DBoundaryDoULoss) using different hyperparameters
(Optimizer and Learning Rate Schedule) for prostate lesion segmentation on the
PI-CAI dataset (Fold1). The evaluation metric is the Dice Similarity Coefficient
(DSC).
The combination of the Adam optimizer and the CosineAnnealingLR
learning rate schedule achieved better result than the result reported in
the manuscript, indicating that more detailed parameter tuning can further improve
the accuracy of the model.