forked from tqch/ddpm-torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_toy.py
132 lines (114 loc) · 5.41 KB
/
train_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import os
import torch
from ddpm_torch.toy import *
from ddpm_torch.utils import seed_all, infer_range
from torch.optim import Adam, lr_scheduler
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--dataset", choices=["gaussian8", "gaussian25", "swissroll"], default="gaussian8")
parser.add_argument("--size", default=100000, type=int)
parser.add_argument("--root", default="~/datasets", type=str, help="root directory of datasets")
parser.add_argument("--epochs", default=100, type=int, help="total number of training epochs")
parser.add_argument("--lr", default=0.001, type=float, help="learning rate")
parser.add_argument("--beta1", default=0.9, type=float, help="beta_1 in Adam")
parser.add_argument("--beta2", default=0.999, type=float, help="beta_2 in Adam")
parser.add_argument("--lr-warmup", default=0, type=int, help="number of warming-up epochs")
parser.add_argument("--batch-size", default=1000, type=int)
parser.add_argument("--timesteps", default=100, type=int, help="number of diffusion steps")
parser.add_argument("--beta-schedule", choices=["quad", "linear", "warmup10", "warmup50", "jsd"], default="linear")
parser.add_argument("--beta-start", default=0.001, type=float)
parser.add_argument("--beta-end", default=0.2, type=float)
parser.add_argument("--model-mean-type", choices=["mean", "x_0", "eps"], default="eps", type=str)
parser.add_argument("--model-var-type", choices=["learned", "fixed-small", "fixed-large"], default="fixed-large", type=str) # noqa
parser.add_argument("--loss-type", choices=["kl", "mse"], default="mse", type=str)
parser.add_argument("--image-dir", default="./images/train", type=str)
parser.add_argument("--chkpt-dir", default="./chkpts", type=str)
parser.add_argument("--chkpt-intv", default=100, type=int, help="frequency of saving a checkpoint")
parser.add_argument("--eval-intv", default=10, type=int)
parser.add_argument("--seed", default=1234, type=int, help="random seed")
parser.add_argument("--resume", action="store_true", help="to resume training from a checkpoint")
parser.add_argument("--device", default="cuda:0", type=str)
parser.add_argument("--mid-features", default=128, type=int)
parser.add_argument("--num-temporal-layers", default=3, type=int)
args = parser.parse_args()
# set seed
seed_all(args.seed)
# prepare toy data
in_features = 2
dataset = args.dataset
data_size = args.size
root = os.path.expanduser(args.root)
batch_size = args.batch_size
num_batches = data_size // batch_size
trainloader = DataStreamer(dataset, batch_size=batch_size, num_batches=num_batches)
# training parameters
device = torch.device(args.device)
epochs = args.epochs
# diffusion parameters
beta_schedule = args.beta_schedule
beta_start, beta_end = args.beta_start, args.beta_end
timesteps = args.timesteps
betas = get_beta_schedule(
beta_schedule, beta_start=beta_start, beta_end=beta_end, timesteps=timesteps)
model_mean_type = args.model_mean_type
model_var_type = args.model_var_type
loss_type = args.loss_type
diffusion = GaussianDiffusion(
betas=betas, model_mean_type=model_mean_type, model_var_type=model_var_type, loss_type=loss_type)
# model parameters
out_features = 2 * in_features if model_var_type == "learned" else in_features
mid_features = args.mid_features
model = Decoder(in_features, mid_features, args.num_temporal_layers)
model.to(device)
# training parameters
lr = args.lr
beta1, beta2 = args.beta1, args.beta2
optimizer = Adam(model.parameters(), lr=lr, betas=(beta1, beta2))
# checkpoint path
chkpt_dir = args.chkpt_dir
if not os.path.exists(chkpt_dir):
os.makedirs(chkpt_dir)
chkpt_path = os.path.join(chkpt_dir, f"ddpm_{dataset}.pt")
# set up image directory
image_dir = os.path.join(args.image_dir, f"{dataset}")
if not os.path.exists(image_dir):
os.makedirs(image_dir)
# scheduler
warmup = args.lr_warmup
scheduler = lr_scheduler.LambdaLR(
optimizer, lr_lambda=lambda t: min((t + 1) / warmup, 1.0)) if warmup > 0 else None
# load trainer
grad_norm = 0 # gradient global clipping is disabled
eval_intv = args.eval_intv
chkpt_intv = args.chkpt_intv
trainer = Trainer(
model=model,
optimizer=optimizer,
diffusion=diffusion,
epochs=epochs,
trainloader=trainloader,
scheduler=scheduler,
grad_norm=grad_norm,
device=device,
eval_intv=eval_intv,
chkpt_intv=chkpt_intv
)
# load evaluator
max_eval_count = min(data_size, 30000)
eval_batch_size = min(max_eval_count, 30000)
xlim, ylim = infer_range(trainloader.dataset)
value_range = (xlim, ylim)
true_data = iter(trainloader)
evaluator = Evaluator(
true_data=np.concatenate([
next(true_data) for _ in range(max_eval_count // eval_batch_size)
]), eval_batch_size=eval_batch_size, max_eval_count=max_eval_count, value_range=value_range)
if args.resume:
try:
trainer.load_checkpoint(chkpt_path)
except FileNotFoundError:
print("Checkpoint file does not exist!")
print("Starting from scratch...")
trainer.train(evaluator, chkpt_path=chkpt_path, image_dir=image_dir, xlim=xlim, ylim=ylim)