forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
189 lines (147 loc) · 5.63 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Neural network utilities and layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import string
import numpy as np
import tensorflow.compat.v1 as tf
class Module(tf.Module):
@property
def variable_scope(self):
scope_name = self._scope_name
if scope_name.endswith('/'):
scope_name = scope_name[:-1]
return tf.variable_scope(scope_name)
def nonlinearity(x):
return x * tf.sigmoid(1.702 * x)
def flatten(x):
return tf.reshape(x, [int(x.shape[0]), -1])
def shift(x, axis, num):
"""Shift a tensor (image) by padding.
Inserts padding on one side and drops data on the other side.
Args:
x: input tensor
axis: Shifting axis
num: Number of pixels to shift. Positive means to pad at the beginning,
negative means to pad at the end.
Returns:
Shifted tensor. Same shape as `x`
"""
paddings = [([max(num, 0), -min(num, 0)] if i == axis else [0, 0])
for i in range(len(x.shape))]
slices = tuple([(slice(-num if num < 0 else None, -num if num > 0 else None)
if i == axis else slice(None)) for i in range(len(x.shape))])
out = tf.pad(x[slices], paddings)
assert out.shape == x.shape
return out
def shift_down(imgs):
assert len(imgs.shape) == 4
return shift(imgs, axis=1, num=1)
def shift_right(imgs):
assert len(imgs.shape) == 4
return shift(imgs, axis=2, num=1)
def _einsum(a, b, c, x, y):
einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c))
return tf.einsum(einsum_str, x, y)
def contract_inner(x, y):
"""tensordot(x, y, 1)."""
x_chars = list(string.ascii_lowercase[:len(x.shape)])
y_chars = list(string.ascii_uppercase[:len(y.shape)])
assert len(x_chars) == len(x.shape) and len(y_chars) == len(y.shape)
y_chars[0] = x_chars[-1] # first axis of y and last of x get summed
out_chars = x_chars[:-1] + y_chars[1:]
return _einsum(x_chars, y_chars, out_chars, x, y)
def attn_nd(q, k, v, time_axis, feat_axis, masked):
assert q.shape == k.shape == v.shape
assert time_axis != feat_axis
num_axes = len(q.shape)
head_dim, num_timesteps = q.shape[feat_axis], q.shape[time_axis]
letters = string.ascii_lowercase[:num_axes]
assert len(letters) == num_axes, 'too many axes'
q_str, k_str, w_str = map(list, [letters] * 3)
k_str[time_axis] = k_str[time_axis].upper()
del w_str[feat_axis]
w_str.append(k_str[time_axis])
w = _einsum(q_str, k_str, w_str, q, k) / np.sqrt(int(head_dim))
if masked:
mask_shape = [1] * len(w.shape)
mask_shape[time_axis] = mask_shape[-1] = num_timesteps
ts = tf.range(num_timesteps, dtype=tf.int32)
mask = ts[:, None] >= ts[None, :]
mask = tf.reshape(tf.cast(mask, w.dtype), mask_shape)
w = w * mask - 1e9 * (1 - mask)
w = tf.nn.softmax(w)
return _einsum(w_str, k_str, q_str, w, v)
class Dense(Module):
def __init__(self, in_dim, num_units, init_scale=1.0, name=None):
super(Dense, self).__init__(name=name)
if not isinstance(num_units, (tuple, list)):
num_units = [num_units]
self.num_units = num_units = list(num_units)
self.in_dim = in_dim
with self.variable_scope:
self.w = tf.get_variable(
'w',
shape=[in_dim, int(np.prod(num_units))],
initializer=tf.initializers.variance_scaling(scale=init_scale)
)
self.b = tf.get_variable(
'b',
shape=[int(np.prod(num_units))],
initializer=tf.zeros_initializer())
@Module.with_name_scope
def __call__(self, x):
assert x.shape[-1] == self.in_dim
y = (
contract_inner(x, tf.reshape(self.w, [self.in_dim] + self.num_units)) +
tf.reshape(self.b, self.num_units))
assert y.shape == x.shape[:-1] + self.num_units
return y
class Conv2d(Module):
def __init__(self,
in_dim,
num_units,
filter_size=(3, 3),
init_scale=1.0,
name=None):
super(Conv2d, self).__init__(name=name)
assert len(filter_size) == 2
with self.variable_scope:
self.w = tf.get_variable(
'w',
shape=list(filter_size) + [in_dim, num_units],
initializer=tf.initializers.variance_scaling(scale=init_scale))
self.b = tf.get_variable(
'b', shape=[num_units], initializer=tf.zeros_initializer())
@Module.with_name_scope
def __call__(self, x):
return tf.nn.conv2d(x, self.w, strides=1, padding='SAME') + self.b
class LayerNorm(Module):
def __init__(self, dim, eps=1e-5, name=None):
super(LayerNorm, self).__init__(name=name)
self.eps = eps
with self.variable_scope:
self.g = tf.get_variable(
'g', shape=[dim], initializer=tf.ones_initializer())
self.b = tf.get_variable(
'b', shape=[dim], initializer=tf.zeros_initializer())
@Module.with_name_scope
def __call__(self, x):
assert [x.shape[-1]] == self.g.shape == self.b.shape
u = tf.reduce_mean(x, axis=-1, keepdims=True)
v = tf.reduce_mean(tf.squared_difference(x, u), axis=-1, keepdims=True)
return (x - u) * tf.rsqrt(v + self.eps) * self.g + self.b