forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray.cc
1020 lines (916 loc) · 31.9 KB
/
array.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* Copyright (c) 2019 by Contributors
* \file array/array.cc
* \brief DGL array utilities implementation
*/
#include <dgl/array.h>
#include <dgl/graph_traversal.h>
#include <dgl/packed_func_ext.h>
#include <dgl/runtime/container.h>
#include <dgl/runtime/shared_mem.h>
#include <dgl/runtime/device_api.h>
#include <sstream>
#include "../c_api_common.h"
#include "./array_op.h"
#include "./arith.h"
using namespace dgl::runtime;
namespace dgl {
namespace aten {
IdArray NewIdArray(int64_t length, DLContext ctx, uint8_t nbits) {
return IdArray::Empty({length}, DLDataType{kDLInt, nbits, 1}, ctx);
}
IdArray Clone(IdArray arr) {
IdArray ret = NewIdArray(arr->shape[0], arr->ctx, arr->dtype.bits);
ret.CopyFrom(arr);
return ret;
}
IdArray Range(int64_t low, int64_t high, uint8_t nbits, DLContext ctx) {
IdArray ret;
ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Range", {
if (nbits == 32) {
ret = impl::Range<XPU, int32_t>(low, high, ctx);
} else if (nbits == 64) {
ret = impl::Range<XPU, int64_t>(low, high, ctx);
} else {
LOG(FATAL) << "Only int32 or int64 is supported.";
}
});
return ret;
}
IdArray Full(int64_t val, int64_t length, uint8_t nbits, DLContext ctx) {
IdArray ret;
ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "Full", {
if (nbits == 32) {
ret = impl::Full<XPU, int32_t>(val, length, ctx);
} else if (nbits == 64) {
ret = impl::Full<XPU, int64_t>(val, length, ctx);
} else {
LOG(FATAL) << "Only int32 or int64 is supported.";
}
});
return ret;
}
IdArray AsNumBits(IdArray arr, uint8_t bits) {
CHECK(bits == 32 || bits == 64)
<< "Invalid ID type. Must be int32 or int64, but got int"
<< static_cast<int>(bits) << ".";
if (arr->dtype.bits == bits)
return arr;
if (arr.NumElements() == 0)
return NewIdArray(arr->shape[0], arr->ctx, bits);
IdArray ret;
ATEN_XPU_SWITCH_CUDA(arr->ctx.device_type, XPU, "AsNumBits", {
ATEN_ID_TYPE_SWITCH(arr->dtype, IdType, {
ret = impl::AsNumBits<XPU, IdType>(arr, bits);
});
});
return ret;
}
IdArray HStack(IdArray lhs, IdArray rhs) {
IdArray ret;
CHECK_SAME_CONTEXT(lhs, rhs);
CHECK_SAME_DTYPE(lhs, rhs);
CHECK_EQ(lhs->shape[0], rhs->shape[0]);
auto device = runtime::DeviceAPI::Get(lhs->ctx);
const auto& ctx = lhs->ctx;
ATEN_ID_TYPE_SWITCH(lhs->dtype, IdType, {
const int64_t len = lhs->shape[0];
ret = NewIdArray(2 * len, lhs->ctx, lhs->dtype.bits);
device->CopyDataFromTo(lhs.Ptr<IdType>(), 0,
ret.Ptr<IdType>(), 0,
len * sizeof(IdType),
ctx, ctx, lhs->dtype, nullptr);
device->CopyDataFromTo(rhs.Ptr<IdType>(), 0,
ret.Ptr<IdType>(), len * sizeof(IdType),
len * sizeof(IdType),
ctx, ctx, lhs->dtype, nullptr);
});
return ret;
}
NDArray IndexSelect(NDArray array, IdArray index) {
NDArray ret;
CHECK_SAME_CONTEXT(array, index);
CHECK_GE(array->ndim, 1) << "Only support array with at least 1 dimension";
CHECK_EQ(array->shape[0], array.NumElements()) << "Only support tensor"
<< " whose first dimension equals number of elements, e.g. (5,), (5, 1)";
CHECK_EQ(index->ndim, 1) << "Index array must be an 1D array.";
ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
ret = impl::IndexSelect<XPU, DType, IdType>(array, index);
});
});
});
return ret;
}
template<typename ValueType>
ValueType IndexSelect(NDArray array, int64_t index) {
CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
CHECK(index >= 0 && index < array.NumElements())
<< "Index " << index << " is out of bound.";
ValueType ret = 0;
ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "IndexSelect", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
ret = impl::IndexSelect<XPU, DType>(array, index);
});
});
return ret;
}
template int32_t IndexSelect<int32_t>(NDArray array, int64_t index);
template int64_t IndexSelect<int64_t>(NDArray array, int64_t index);
template uint32_t IndexSelect<uint32_t>(NDArray array, int64_t index);
template uint64_t IndexSelect<uint64_t>(NDArray array, int64_t index);
template float IndexSelect<float>(NDArray array, int64_t index);
template double IndexSelect<double>(NDArray array, int64_t index);
NDArray IndexSelect(NDArray array, int64_t start, int64_t end) {
CHECK_EQ(array->ndim, 1) << "Only support select values from 1D array.";
CHECK(start >= 0 && start < array.NumElements())
<< "Index " << start << " is out of bound.";
CHECK(end >= 0 && end <= array.NumElements())
<< "Index " << end << " is out of bound.";
CHECK_LE(start, end);
auto device = runtime::DeviceAPI::Get(array->ctx);
const int64_t len = end - start;
NDArray ret = NDArray::Empty({len}, array->dtype, array->ctx);
ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
device->CopyDataFromTo(array->data, start * sizeof(DType),
ret->data, 0, len * sizeof(DType),
array->ctx, ret->ctx, array->dtype, nullptr);
});
return ret;
}
NDArray Scatter(NDArray array, IdArray indices) {
NDArray ret;
ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Scatter", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
ATEN_ID_TYPE_SWITCH(indices->dtype, IdType, {
ret = impl::Scatter<XPU, DType, IdType>(array, indices);
});
});
});
return ret;
}
void Scatter_(IdArray index, NDArray value, NDArray out) {
CHECK_SAME_DTYPE(value, out);
CHECK_SAME_CONTEXT(index, value);
CHECK_SAME_CONTEXT(index, out);
CHECK_EQ(value->shape[0], index->shape[0]);
if (index->shape[0] == 0)
return;
ATEN_XPU_SWITCH_CUDA(value->ctx.device_type, XPU, "Scatter_", {
ATEN_DTYPE_SWITCH(value->dtype, DType, "values", {
ATEN_ID_TYPE_SWITCH(index->dtype, IdType, {
impl::Scatter_<XPU, DType, IdType>(index, value, out);
});
});
});
}
NDArray Repeat(NDArray array, IdArray repeats) {
NDArray ret;
ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Repeat", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "values", {
ATEN_ID_TYPE_SWITCH(repeats->dtype, IdType, {
ret = impl::Repeat<XPU, DType, IdType>(array, repeats);
});
});
});
return ret;
}
IdArray Relabel_(const std::vector<IdArray>& arrays) {
IdArray ret;
ATEN_XPU_SWITCH(arrays[0]->ctx.device_type, XPU, "Relabel_", {
ATEN_ID_TYPE_SWITCH(arrays[0]->dtype, IdType, {
ret = impl::Relabel_<XPU, IdType>(arrays);
});
});
return ret;
}
NDArray Concat(const std::vector<IdArray>& arrays) {
IdArray ret;
int64_t len = 0, offset = 0;
for (size_t i = 0; i < arrays.size(); ++i) {
len += arrays[i]->shape[0];
CHECK_SAME_DTYPE(arrays[0], arrays[i]);
CHECK_SAME_CONTEXT(arrays[0], arrays[i]);
}
NDArray ret_arr = NDArray::Empty({len},
arrays[0]->dtype,
arrays[0]->ctx);
auto device = runtime::DeviceAPI::Get(arrays[0]->ctx);
for (size_t i = 0; i < arrays.size(); ++i) {
ATEN_DTYPE_SWITCH(arrays[i]->dtype, DType, "array", {
device->CopyDataFromTo(
static_cast<DType*>(arrays[i]->data),
0,
static_cast<DType*>(ret_arr->data),
offset,
arrays[i]->shape[0] * sizeof(DType),
arrays[i]->ctx,
ret_arr->ctx,
arrays[i]->dtype,
nullptr);
offset += arrays[i]->shape[0] * sizeof(DType);
});
}
return ret_arr;
}
template<typename ValueType>
std::tuple<NDArray, IdArray, IdArray> Pack(NDArray array, ValueType pad_value) {
std::tuple<NDArray, IdArray, IdArray> ret;
ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "Pack", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
ret = impl::Pack<XPU, DType>(array, static_cast<DType>(pad_value));
});
});
return ret;
}
template std::tuple<NDArray, IdArray, IdArray> Pack<int32_t>(NDArray, int32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<int64_t>(NDArray, int64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint32_t>(NDArray, uint32_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<uint64_t>(NDArray, uint64_t);
template std::tuple<NDArray, IdArray, IdArray> Pack<float>(NDArray, float);
template std::tuple<NDArray, IdArray, IdArray> Pack<double>(NDArray, double);
std::pair<NDArray, IdArray> ConcatSlices(NDArray array, IdArray lengths) {
std::pair<NDArray, IdArray> ret;
ATEN_XPU_SWITCH(array->ctx.device_type, XPU, "ConcatSlices", {
ATEN_DTYPE_SWITCH(array->dtype, DType, "array", {
ATEN_ID_TYPE_SWITCH(lengths->dtype, IdType, {
ret = impl::ConcatSlices<XPU, DType, IdType>(array, lengths);
});
});
});
return ret;
}
IdArray CumSum(IdArray array, bool prepend_zero) {
IdArray ret;
ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "CumSum", {
ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
ret = impl::CumSum<XPU, IdType>(array, prepend_zero);
});
});
return ret;
}
IdArray NonZero(NDArray array) {
IdArray ret;
ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "NonZero", {
ATEN_ID_TYPE_SWITCH(array->dtype, DType, {
ret = impl::NonZero<XPU, DType>(array);
});
});
return ret;
}
std::pair<IdArray, IdArray> Sort(IdArray array) {
if (array.NumElements() == 0) {
IdArray idx = NewIdArray(0, array->ctx, 64);
return std::make_pair(array, idx);
}
std::pair<IdArray, IdArray> ret;
ATEN_XPU_SWITCH_CUDA(array->ctx.device_type, XPU, "Sort", {
ATEN_ID_TYPE_SWITCH(array->dtype, IdType, {
ret = impl::Sort<XPU, IdType>(array);
});
});
return ret;
}
std::string ToDebugString(NDArray array) {
std::ostringstream oss;
NDArray a = array.CopyTo(DLContext{kDLCPU, 0});
oss << "array([";
ATEN_DTYPE_SWITCH(a->dtype, DType, "array", {
for (int64_t i = 0; i < std::min<int64_t>(a.NumElements(), 10L); ++i) {
oss << a.Ptr<DType>()[i] << ", ";
}
});
if (a.NumElements() > 10)
oss << "...";
oss << "], dtype=" << array->dtype << ", ctx=" << array->ctx << ")";
return oss.str();
}
///////////////////////// CSR routines //////////////////////////
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
bool ret = false;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
});
return ret;
}
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
NDArray ret;
CHECK_SAME_DTYPE(csr.indices, row);
CHECK_SAME_DTYPE(csr.indices, col);
CHECK_SAME_CONTEXT(csr.indices, row);
CHECK_SAME_CONTEXT(csr.indices, col);
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsNonZero", {
ret = impl::CSRIsNonZero<XPU, IdType>(csr, row, col);
});
return ret;
}
bool CSRHasDuplicate(CSRMatrix csr) {
bool ret = false;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRHasDuplicate", {
ret = impl::CSRHasDuplicate<XPU, IdType>(csr);
});
return ret;
}
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
int64_t ret = 0;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
});
return ret;
}
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray row) {
NDArray ret;
CHECK_SAME_DTYPE(csr.indices, row);
CHECK_SAME_CONTEXT(csr.indices, row);
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowNNZ", {
ret = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
});
return ret;
}
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
NDArray ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowColumnIndices", {
ret = impl::CSRGetRowColumnIndices<XPU, IdType>(csr, row);
});
return ret;
}
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
NDArray ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetRowData", {
ret = impl::CSRGetRowData<XPU, IdType>(csr, row);
});
return ret;
}
bool CSRIsSorted(CSRMatrix csr) {
if (csr.indices->shape[0] <= 1)
return true;
bool ret = false;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRIsSorted", {
ret = impl::CSRIsSorted<XPU, IdType>(csr);
});
return ret;
}
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
NDArray ret;
CHECK_SAME_DTYPE(csr.indices, rows);
CHECK_SAME_DTYPE(csr.indices, cols);
CHECK_SAME_CONTEXT(csr.indices, rows);
CHECK_SAME_CONTEXT(csr.indices, cols);
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetData", {
ret = impl::CSRGetData<XPU, IdType>(csr, rows, cols);
});
return ret;
}
std::vector<NDArray> CSRGetDataAndIndices(
CSRMatrix csr, NDArray rows, NDArray cols) {
CHECK_SAME_DTYPE(csr.indices, rows);
CHECK_SAME_DTYPE(csr.indices, cols);
CHECK_SAME_CONTEXT(csr.indices, rows);
CHECK_SAME_CONTEXT(csr.indices, cols);
std::vector<NDArray> ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRGetDataAndIndices", {
ret = impl::CSRGetDataAndIndices<XPU, IdType>(csr, rows, cols);
});
return ret;
}
CSRMatrix CSRTranspose(CSRMatrix csr) {
CSRMatrix ret;
ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRTranspose", {
ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
ret = impl::CSRTranspose<XPU, IdType>(csr);
});
});
return ret;
}
COOMatrix CSRToCOO(CSRMatrix csr, bool data_as_order) {
COOMatrix ret;
if (data_as_order) {
ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOODataAsOrder", {
ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
ret = impl::CSRToCOODataAsOrder<XPU, IdType>(csr);
});
});
} else {
ATEN_XPU_SWITCH_CUDA(csr.indptr->ctx.device_type, XPU, "CSRToCOO", {
ATEN_ID_TYPE_SWITCH(csr.indptr->dtype, IdType, {
ret = impl::CSRToCOO<XPU, IdType>(csr);
});
});
}
return ret;
}
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
CHECK(start >= 0 && start < csr.num_rows) << "Invalid start index: " << start;
CHECK(end >= 0 && end <= csr.num_rows) << "Invalid end index: " << end;
CHECK_GE(end, start);
CSRMatrix ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
ret = impl::CSRSliceRows<XPU, IdType>(csr, start, end);
});
return ret;
}
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
CHECK_SAME_DTYPE(csr.indices, rows);
CHECK_SAME_CONTEXT(csr.indices, rows);
CSRMatrix ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceRows", {
ret = impl::CSRSliceRows<XPU, IdType>(csr, rows);
});
return ret;
}
CSRMatrix CSRSliceMatrix(CSRMatrix csr, NDArray rows, NDArray cols) {
CHECK_SAME_DTYPE(csr.indices, rows);
CHECK_SAME_DTYPE(csr.indices, cols);
CHECK_SAME_CONTEXT(csr.indices, rows);
CHECK_SAME_CONTEXT(csr.indices, cols);
CSRMatrix ret;
ATEN_CSR_SWITCH_CUDA(csr, XPU, IdType, "CSRSliceMatrix", {
ret = impl::CSRSliceMatrix<XPU, IdType>(csr, rows, cols);
});
return ret;
}
void CSRSort_(CSRMatrix* csr) {
if (csr->sorted)
return;
ATEN_CSR_SWITCH_CUDA(*csr, XPU, IdType, "CSRSort_", {
impl::CSRSort_<XPU, IdType>(csr);
});
}
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
CSRMatrix ret;
ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRReorder", {
ret = impl::CSRReorder<XPU, IdType>(csr, new_row_ids, new_col_ids);
});
return ret;
}
CSRMatrix CSRRemove(CSRMatrix csr, IdArray entries) {
CSRMatrix ret;
ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRRemove", {
ret = impl::CSRRemove<XPU, IdType>(csr, entries);
});
return ret;
}
COOMatrix CSRRowWiseSampling(
CSRMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
COOMatrix ret;
ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseSampling", {
if (IsNullArray(prob)) {
ret = impl::CSRRowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
} else {
ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
ret = impl::CSRRowWiseSampling<XPU, IdType, FloatType>(
mat, rows, num_samples, prob, replace);
});
}
});
return ret;
}
COOMatrix CSRRowWiseTopk(
CSRMatrix mat, IdArray rows, int64_t k, NDArray weight, bool ascending) {
COOMatrix ret;
ATEN_CSR_SWITCH(mat, XPU, IdType, "CSRRowWiseTopk", {
ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
ret = impl::CSRRowWiseTopk<XPU, IdType, DType>(
mat, rows, k, weight, ascending);
});
});
return ret;
}
CSRMatrix UnionCsr(const std::vector<CSRMatrix>& csrs) {
CSRMatrix ret;
CHECK_GT(csrs.size(), 1) << "UnionCsr creates a union of multiple CSRMatrixes";
// sanity check
for (size_t i = 1; i < csrs.size(); ++i) {
CHECK_EQ(csrs[0].num_rows, csrs[i].num_rows) <<
"UnionCsr requires both CSRMatrix have same number of rows";
CHECK_EQ(csrs[0].num_cols, csrs[i].num_cols) <<
"UnionCsr requires both CSRMatrix have same number of cols";
CHECK_SAME_CONTEXT(csrs[0].indptr, csrs[i].indptr);
CHECK_SAME_DTYPE(csrs[0].indptr, csrs[i].indptr);
}
ATEN_CSR_SWITCH(csrs[0], XPU, IdType, "UnionCsr", {
ret = impl::UnionCsr<XPU, IdType>(csrs);
});
return ret;
}
std::tuple<CSRMatrix, IdArray, IdArray>
CSRToSimple(const CSRMatrix& csr) {
std::tuple<CSRMatrix, IdArray, IdArray> ret;
CSRMatrix sorted_csr = (CSRIsSorted(csr)) ? csr : CSRSort(csr);
ATEN_CSR_SWITCH(csr, XPU, IdType, "CSRToSimple", {
ret = impl::CSRToSimple<XPU, IdType>(sorted_csr);
});
return ret;
}
///////////////////////// COO routines //////////////////////////
bool COOIsNonZero(COOMatrix coo, int64_t row, int64_t col) {
bool ret = false;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
});
return ret;
}
NDArray COOIsNonZero(COOMatrix coo, NDArray row, NDArray col) {
NDArray ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOIsNonZero", {
ret = impl::COOIsNonZero<XPU, IdType>(coo, row, col);
});
return ret;
}
bool COOHasDuplicate(COOMatrix coo) {
bool ret = false;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOHasDuplicate", {
ret = impl::COOHasDuplicate<XPU, IdType>(coo);
});
return ret;
}
int64_t COOGetRowNNZ(COOMatrix coo, int64_t row) {
int64_t ret = 0;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
});
return ret;
}
NDArray COOGetRowNNZ(COOMatrix coo, NDArray row) {
NDArray ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowNNZ", {
ret = impl::COOGetRowNNZ<XPU, IdType>(coo, row);
});
return ret;
}
std::pair<NDArray, NDArray> COOGetRowDataAndIndices(COOMatrix coo, int64_t row) {
std::pair<NDArray, NDArray> ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetRowDataAndIndices", {
ret = impl::COOGetRowDataAndIndices<XPU, IdType>(coo, row);
});
return ret;
}
std::vector<NDArray> COOGetDataAndIndices(
COOMatrix coo, NDArray rows, NDArray cols) {
std::vector<NDArray> ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetDataAndIndices", {
ret = impl::COOGetDataAndIndices<XPU, IdType>(coo, rows, cols);
});
return ret;
}
NDArray COOGetData(COOMatrix coo, NDArray rows, NDArray cols) {
NDArray ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOGetData", {
ret = impl::COOGetData<XPU, IdType>(coo, rows, cols);
});
return ret;
}
COOMatrix COOTranspose(COOMatrix coo) {
return COOMatrix(coo.num_cols, coo.num_rows, coo.col, coo.row, coo.data);
}
CSRMatrix COOToCSR(COOMatrix coo) {
CSRMatrix ret;
ATEN_XPU_SWITCH_CUDA(coo.row->ctx.device_type, XPU, "COOToCSR", {
ATEN_ID_TYPE_SWITCH(coo.row->dtype, IdType, {
ret = impl::COOToCSR<XPU, IdType>(coo);
});
});
return ret;
}
COOMatrix COOSliceRows(COOMatrix coo, int64_t start, int64_t end) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
ret = impl::COOSliceRows<XPU, IdType>(coo, start, end);
});
return ret;
}
COOMatrix COOSliceRows(COOMatrix coo, NDArray rows) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceRows", {
ret = impl::COOSliceRows<XPU, IdType>(coo, rows);
});
return ret;
}
COOMatrix COOSliceMatrix(COOMatrix coo, NDArray rows, NDArray cols) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOSliceMatrix", {
ret = impl::COOSliceMatrix<XPU, IdType>(coo, rows, cols);
});
return ret;
}
void COOSort_(COOMatrix* mat, bool sort_column) {
if ((mat->row_sorted && !sort_column) || mat->col_sorted)
return;
ATEN_XPU_SWITCH_CUDA(mat->row->ctx.device_type, XPU, "COOSort_", {
ATEN_ID_TYPE_SWITCH(mat->row->dtype, IdType, {
impl::COOSort_<XPU, IdType>(mat, sort_column);
});
});
}
std::pair<bool, bool> COOIsSorted(COOMatrix coo) {
if (coo.row->shape[0] <= 1)
return {true, true};
std::pair<bool, bool> ret;
ATEN_COO_SWITCH_CUDA(coo, XPU, IdType, "COOIsSorted", {
ret = impl::COOIsSorted<XPU, IdType>(coo);
});
return ret;
}
COOMatrix COOReorder(COOMatrix coo, runtime::NDArray new_row_ids, runtime::NDArray new_col_ids) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOReorder", {
ret = impl::COOReorder<XPU, IdType>(coo, new_row_ids, new_col_ids);
});
return ret;
}
COOMatrix COORemove(COOMatrix coo, IdArray entries) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COORemove", {
ret = impl::COORemove<XPU, IdType>(coo, entries);
});
return ret;
}
COOMatrix COORowWiseSampling(
COOMatrix mat, IdArray rows, int64_t num_samples, FloatArray prob, bool replace) {
COOMatrix ret;
ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseSampling", {
if (IsNullArray(prob)) {
ret = impl::COORowWiseSamplingUniform<XPU, IdType>(mat, rows, num_samples, replace);
} else {
ATEN_FLOAT_TYPE_SWITCH(prob->dtype, FloatType, "probability", {
ret = impl::COORowWiseSampling<XPU, IdType, FloatType>(
mat, rows, num_samples, prob, replace);
});
}
});
return ret;
}
COOMatrix COORowWiseTopk(
COOMatrix mat, IdArray rows, int64_t k, FloatArray weight, bool ascending) {
COOMatrix ret;
ATEN_COO_SWITCH(mat, XPU, IdType, "COORowWiseTopk", {
ATEN_DTYPE_SWITCH(weight->dtype, DType, "weight", {
ret = impl::COORowWiseTopk<XPU, IdType, DType>(
mat, rows, k, weight, ascending);
});
});
return ret;
}
std::pair<COOMatrix, IdArray> COOCoalesce(COOMatrix coo) {
std::pair<COOMatrix, IdArray> ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOCoalesce", {
ret = impl::COOCoalesce<XPU, IdType>(coo);
});
return ret;
}
COOMatrix COOLineGraph(const COOMatrix &coo, bool backtracking) {
COOMatrix ret;
ATEN_COO_SWITCH(coo, XPU, IdType, "COOLineGraph", {
ret = impl::COOLineGraph<XPU, IdType>(coo, backtracking);
});
return ret;
}
COOMatrix UnionCoo(const std::vector<COOMatrix>& coos) {
COOMatrix ret;
CHECK_GT(coos.size(), 1) << "UnionCoo creates a union of multiple COOMatrixes";
// sanity check
for (size_t i = 1; i < coos.size(); ++i) {
CHECK_EQ(coos[0].num_rows, coos[i].num_rows) <<
"UnionCoo requires both COOMatrix have same number of rows";
CHECK_EQ(coos[0].num_cols, coos[i].num_cols) <<
"UnionCoo requires both COOMatrix have same number of cols";
CHECK_SAME_CONTEXT(coos[0].row, coos[i].row);
CHECK_SAME_DTYPE(coos[0].row, coos[i].row);
}
// we assume the number of coos is not large in common cases
std::vector<IdArray> coo_row;
std::vector<IdArray> coo_col;
bool has_data = false;
for (size_t i = 0; i < coos.size(); ++i) {
coo_row.push_back(coos[i].row);
coo_col.push_back(coos[i].col);
has_data |= COOHasData(coos[i]);
}
IdArray row = Concat(coo_row);
IdArray col = Concat(coo_col);
IdArray data = NullArray();
if (has_data) {
std::vector<IdArray> eid_data;
eid_data.push_back(COOHasData(coos[0]) ?
coos[0].data :
Range(0,
coos[0].row->shape[0],
coos[0].row->dtype.bits,
coos[0].row->ctx));
int64_t num_edges = coos[0].row->shape[0];
for (size_t i = 1; i < coos.size(); ++i) {
eid_data.push_back(COOHasData(coos[i]) ?
coos[i].data + num_edges :
Range(num_edges,
num_edges + coos[i].row->shape[0],
coos[i].row->dtype.bits,
coos[i].row->ctx));
num_edges += coos[i].row->shape[0];
}
data = Concat(eid_data);
}
return COOMatrix(
coos[0].num_rows,
coos[0].num_cols,
row,
col,
data,
false,
false);
}
std::tuple<COOMatrix, IdArray, IdArray>
COOToSimple(const COOMatrix& coo) {
// coo column sorted
const COOMatrix sorted_coo = COOSort(coo, true);
const IdArray eids_shuffled = COOHasData(sorted_coo) ?
sorted_coo.data :
Range(0, sorted_coo.row->shape[0], sorted_coo.row->dtype.bits, sorted_coo.row->ctx);
const auto &coalesced_result = COOCoalesce(sorted_coo);
const COOMatrix &coalesced_adj = coalesced_result.first;
const IdArray &count = coalesced_result.second;
/*
* eids_shuffled actually already contains the mapping from old edge space to the
* new one:
*
* * eids_shuffled[0:count[0]] indicates the original edge IDs that coalesced into new
* edge #0.
* * eids_shuffled[count[0]:count[0] + count[1]] indicates those that coalesced into
* new edge #1.
* * eids_shuffled[count[0] + count[1]:count[0] + count[1] + count[2]] indicates those
* that coalesced into new edge #2.
* * etc.
*
* Here, we need to translate eids_shuffled to an array "eids_remapped" such that
* eids_remapped[i] indicates the new edge ID the old edge #i is mapped to. The
* translation can simply be achieved by (in numpy code):
*
* new_eid_for_eids_shuffled = np.range(len(count)).repeat(count)
* eids_remapped = np.zeros_like(new_eid_for_eids_shuffled)
* eids_remapped[eids_shuffled] = new_eid_for_eids_shuffled
*/
const IdArray new_eids = Range(
0, coalesced_adj.row->shape[0], coalesced_adj.row->dtype.bits, coalesced_adj.row->ctx);
const IdArray eids_remapped = Scatter(Repeat(new_eids, count), eids_shuffled);
COOMatrix ret = COOMatrix(
coalesced_adj.num_rows,
coalesced_adj.num_cols,
coalesced_adj.row,
coalesced_adj.col,
NullArray(),
true,
true);
return std::make_tuple(ret, count, eids_remapped);
}
///////////////////////// Graph Traverse routines //////////////////////////
Frontiers BFSNodesFrontiers(const CSRMatrix& csr, IdArray source) {
Frontiers ret;
CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
"Graph and source should in the same device context";
CHECK_EQ(csr.indices->dtype, source->dtype) <<
"Graph and source should in the same dtype";
CHECK_EQ(csr.num_rows, csr.num_cols) <<
"Graph traversal can only work on square-shaped CSR.";
ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSNodesFrontiers", {
ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
ret = impl::BFSNodesFrontiers<XPU, IdType>(csr, source);
});
});
return ret;
}
Frontiers BFSEdgesFrontiers(const CSRMatrix& csr, IdArray source) {
Frontiers ret;
CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
"Graph and source should in the same device context";
CHECK_EQ(csr.indices->dtype, source->dtype) <<
"Graph and source should in the same dtype";
CHECK_EQ(csr.num_rows, csr.num_cols) <<
"Graph traversal can only work on square-shaped CSR.";
ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "BFSEdgesFrontiers", {
ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
ret = impl::BFSEdgesFrontiers<XPU, IdType>(csr, source);
});
});
return ret;
}
Frontiers TopologicalNodesFrontiers(const CSRMatrix& csr) {
Frontiers ret;
CHECK_EQ(csr.num_rows, csr.num_cols) <<
"Graph traversal can only work on square-shaped CSR.";
ATEN_XPU_SWITCH(csr.indptr->ctx.device_type, XPU, "TopologicalNodesFrontiers", {
ATEN_ID_TYPE_SWITCH(csr.indices->dtype, IdType, {
ret = impl::TopologicalNodesFrontiers<XPU, IdType>(csr);
});
});
return ret;
}
Frontiers DGLDFSEdges(const CSRMatrix& csr, IdArray source) {
Frontiers ret;
CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
"Graph and source should in the same device context";
CHECK_EQ(csr.indices->dtype, source->dtype) <<
"Graph and source should in the same dtype";
CHECK_EQ(csr.num_rows, csr.num_cols) <<
"Graph traversal can only work on square-shaped CSR.";
ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSEdges", {
ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
ret = impl::DGLDFSEdges<XPU, IdType>(csr, source);
});
});
return ret;
}
Frontiers DGLDFSLabeledEdges(const CSRMatrix& csr,
IdArray source,
const bool has_reverse_edge,
const bool has_nontree_edge,
const bool return_labels) {
Frontiers ret;
CHECK_EQ(csr.indptr->ctx.device_type, source->ctx.device_type) <<
"Graph and source should in the same device context";
CHECK_EQ(csr.indices->dtype, source->dtype) <<
"Graph and source should in the same dtype";
CHECK_EQ(csr.num_rows, csr.num_cols) <<
"Graph traversal can only work on square-shaped CSR.";
ATEN_XPU_SWITCH(source->ctx.device_type, XPU, "DGLDFSLabeledEdges", {
ATEN_ID_TYPE_SWITCH(source->dtype, IdType, {
ret = impl::DGLDFSLabeledEdges<XPU, IdType>(csr,
source,
has_reverse_edge,
has_nontree_edge,
return_labels);
});
});
return ret;
}
///////////////////////// C APIs /////////////////////////
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFormat")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
SparseMatrixRef spmat = args[0];
*rv = spmat->format;
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumRows")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
SparseMatrixRef spmat = args[0];
*rv = spmat->num_rows;
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetNumCols")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
SparseMatrixRef spmat = args[0];
*rv = spmat->num_cols;
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetIndices")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
SparseMatrixRef spmat = args[0];
const int64_t i = args[1];
*rv = spmat->indices[i];
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLSparseMatrixGetFlags")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
SparseMatrixRef spmat = args[0];
List<Value> flags;
for (bool flg : spmat->flags) {
flags.push_back(Value(MakeValue(flg)));
}
*rv = flags;
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLCreateSparseMatrix")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
const int32_t format = args[0];
const int64_t nrows = args[1];
const int64_t ncols = args[2];
const List<Value> indices = args[3];
const List<Value> flags = args[4];
std::shared_ptr<SparseMatrix> spmat(new SparseMatrix(
format, nrows, ncols,
ListValueToVector<IdArray>(indices),
ListValueToVector<bool>(flags)));
*rv = SparseMatrixRef(spmat);
});
DGL_REGISTER_GLOBAL("ndarray._CAPI_DGLExistSharedMemArray")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
const std::string name = args[0];
#ifndef _WIN32
*rv = SharedMemory::Exist(name);
#else