Comparison results of Phi-3-vision-128K-Instruct and MiniCPM-Llama3-V 2.5, regarding the model size, hardware requirements, and performances.
我们提供了从模型参数、硬件需求、性能指标等方面对比 Phi-3-vision-128K-Instruct 和 MiniCPM-Llama3-V 2.5 的结果。
With in4 quantization, MiniCPM-Llama3-V 2.5 delivers smooth inference with only 8GB of GPU memory.
通过 int4 量化,MiniCPM-Llama3-V 2.5 仅需 8GB 显存即可推理。
Model(模型) | GPU Memory(显存) |
---|---|
MiniCPM-Llama3-V 2.5 | 19 GB |
Phi-3-vision-128K-Instruct | 12 GB |
MiniCPM-Llama3-V 2.5 (int4) | 8 GB |
In most benchmarks, MiniCPM-Llama3-V 2.5 achieves better performance compared with Phi-3-vision-128K-Instruct.
在大多数评测集上, MiniCPM-Llama3-V 2.5 相比于 Phi-3-vision-128K-Instruct 都展现出了更优的性能表现.
Phi-3-vision-128K-Instruct | MiniCPM-Llama3-V 2.5 | |
---|---|---|
Size(参数) | 4B | 8B |
OpenCompass 2024/05 | 53.7 | 58.8 |
OCRBench | 639.0 | 725.0 |
RealworldQA | 58.8 | 63.5 |
TextVQA | 72.2 | 76.6 |
ScienceQA | 90.8 | 89.0 |
POPE | 83.4 | 87.2 |
MiniCPM-Llama3-V 2.5 exhibits stronger multilingual capabilities compared with Phi-3-vision-128K-Instruct on LLaVA Bench.
MiniCPM-Llama3-V 2.5 在对话和推理评测榜单 LLaVA Bench 上展现出了比 Phi-3-vision-128K-Instruct 更强的多语言的性能。