forked from nvpro-samples/gl_vk_meshlet_cadscene
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nvmeshlet_utils.glsl
304 lines (250 loc) · 7.91 KB
/
nvmeshlet_utils.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
* Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2016-2022 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef USE_BACKFACECULL
#define USE_BACKFACECULL 1
#endif
#ifndef USE_SUBPIXELCULL
#define USE_SUBPIXELCULL 1
#endif
#ifndef USE_EARLY_BACKFACECULL
#define USE_EARLY_BACKFACECULL 1
#endif
#ifndef USE_EARLY_FRUSTUMCULL
#define USE_EARLY_FRUSTUMCULL 1
#endif
#ifndef USE_EARLY_SUBPIXELCULL
#define USE_EARLY_SUBPIXELCULL 1
#endif
#ifndef USE_EARLY_CLIPPINGCULL
#define USE_EARLY_CLIPPINGCULL 1
#endif
#if NVMESHLET_ENCODING == NVMESHLET_ENCODING_PACKBASIC
/*
Pack
// x
unsigned bboxMinX : 8;
unsigned bboxMinY : 8;
unsigned bboxMinZ : 8;
unsigned vertexMax : 8;
// y
unsigned bboxMaxX : 8;
unsigned bboxMaxY : 8;
unsigned bboxMaxZ : 8;
unsigned primMax : 8;
// z
signed coneOctX : 8;
signed coneOctY : 8;
signed coneAngle : 8;
unsigned vertexBits : 8;
// w
unsigned packOffset : 32;
*/
void decodeMeshlet( uvec4 meshletDesc,
out uint vertMax, out uint primMax,
out uint primStart, out uint primDiv,
out uint vidxStart, out uint vidxBits, out uint vidxDiv)
{
uint vMax = (meshletDesc.x >> 24);
uint packOffset = meshletDesc.w;
vertMax = vMax;
primMax = (meshletDesc.y >> 24);
vidxStart = packOffset;
vidxDiv = (meshletDesc.z >> 24);
vidxBits = vidxDiv == 2 ? 16 : 0;
primDiv = 4;
primStart = (packOffset + ((vMax + 1 + vidxDiv - 1) / vidxDiv) + 1) & ~1;
}
#else
#error "NVMESHLET_ENCODING not supported"
#endif
bool isMeshletValid(uvec4 meshletDesc)
{
return meshletDesc.x != 0;
}
uint getMeshletNumTriangles(uvec4 meshletDesc)
{
return (meshletDesc.y >> 24) + 1;
}
void decodeBbox(uvec4 meshletDesc, in ObjectData object, out vec3 oBboxMin, out vec3 oBboxMax)
{
vec3 bboxMin = unpackUnorm4x8(meshletDesc.x).xyz;
vec3 bboxMax = unpackUnorm4x8(meshletDesc.y).xyz;
vec3 objectExtent = (object.bboxMax.xyz - object.bboxMin.xyz);
oBboxMin = bboxMin * objectExtent + object.bboxMin.xyz;
oBboxMax = bboxMax * objectExtent + object.bboxMin.xyz;
}
// oct_ code from "A Survey of Efficient Representations for Independent Unit Vectors"
// http://jcgt.org/published/0003/02/01/paper.pdf
vec2 oct_signNotZero(vec2 v) {
return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);
}
vec3 oct_to_vec3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
if (v.z < 0) v.xy = (1.0 - abs(v.yx)) * oct_signNotZero(v.xy);
return normalize(v);
}
void decodeNormalAngle(uvec4 meshletDesc, in ObjectData object, out vec3 oNormal, out float oAngle)
{
#if NVMESHLET_ENCODING == NVMESHLET_ENCODING_PACKBASIC
uint packedVec = meshletDesc.z;
#else
#error "NVMESHLET_ENCODING not supported"
#endif
vec3 unpackedVec = unpackSnorm4x8(packedVec).xyz;
oNormal = oct_to_vec3(unpackedVec.xy) * object.winding;
oAngle = unpackedVec.z;
}
uint getCullBits(vec4 hPos)
{
uint cullBits = 0;
cullBits |= hPos.x < -hPos.w ? 1 : 0;
cullBits |= hPos.x > hPos.w ? 2 : 0;
cullBits |= hPos.y < -hPos.w ? 4 : 0;
cullBits |= hPos.y > hPos.w ? 8 : 0;
#if NVMESHLET_CLIP_Z_SIGNED
cullBits |= hPos.z < -hPos.w ? 16 : 0;
#else
cullBits |= hPos.z < 0 ? 16 : 0;
#endif
cullBits |= hPos.z > hPos.w ? 32 : 0;
cullBits |= hPos.w <= 0 ? 64 : 0;
return cullBits;
}
bool pixelBboxCull(vec2 pixelMin, vec2 pixelMax)
{
// Apply some safety around the bbox to take into account fixed point rasterization.
// This logic will only work without MSAA active.
const float epsilon = (1.0 / 256.0);
pixelMin -= epsilon;
pixelMax += epsilon;
// bbox culling
pixelMin = round(pixelMin);
pixelMax = round(pixelMax);
return ( ( pixelMin.x == pixelMax.x) || ( pixelMin.y == pixelMax.y));
}
//////////////////////////////////////////////////////////////////
vec4 getBoxCorner(vec3 bboxMin, vec3 bboxMax, int n)
{
bvec3 useMax = bvec3((n & 1) != 0, (n & 2) != 0, (n & 4) != 0);
return vec4(mix(bboxMin, bboxMax, useMax),1);
}
bool earlyCull(uvec4 meshletDesc, in ObjectData object)
{
vec3 bboxMin;
vec3 bboxMax;
decodeBbox(meshletDesc, object, bboxMin, bboxMax);
#if USE_EARLY_BACKFACECULL && USE_BACKFACECULL
vec3 oGroupNormal;
float angle;
decodeNormalAngle(meshletDesc, object, oGroupNormal, angle);
vec3 wGroupNormal = normalize(mat3(object.worldMatrixIT) * oGroupNormal);
bool backface = angle < 0;
#else
bool backface = false;
#endif
uint frustumBits = ~0;
uint clippingBits = ~0;
vec3 clipMin = vec3( 100000);
vec3 clipMax = vec3(-100000);
for (int n = 0; n < 8; n++){
vec4 wPos = object.worldMatrix * getBoxCorner(bboxMin, bboxMax, n);
vec4 hPos = scene.viewProjMatrix * wPos;
frustumBits &= getCullBits(hPos);
#if USE_EARLY_BACKFACECULL && USE_BACKFACECULL
// approximate backface cone culling by testing against
// bbox corners
vec3 wDir = normalize(scene.viewPos.xyz - wPos.xyz);
backface = backface && (dot(wGroupNormal, wDir) < angle);
#endif
#if USE_EARLY_CLIPPINGCULL && USE_CLIPPING
uint planeBits = 0;
for (int i = 0; i < NUM_CLIPPING_PLANES; i++){
planeBits |= ((dot(scene.wClipPlanes[i], wPos) < 0) ? 1 : 0) << i;
}
clippingBits &= planeBits;
#endif
clipMin = min(clipMin, hPos.xyz / hPos.w);
clipMax = max(clipMax, hPos.xyz / hPos.w);
}
#if !USE_EARLY_FRUSTUMCULL
frustumBits = 0;
#endif
#if !USE_EARLY_CLIPPINGCULL || !USE_CLIPPING
clippingBits = 0;
#endif
#if USE_EARLY_SUBPIXELCULL && USE_SUBPIXELCULL
vec2 pixelMin = (clipMin.xy * 0.5 + 0.5) * scene.viewportTaskCull;
vec2 pixelMax = (clipMax.xy * 0.5 + 0.5) * scene.viewportTaskCull;
bool subpixel = pixelBboxCull(pixelMin, pixelMax);
#else
bool subpixel = false;
#endif
return (frustumBits != 0 || backface || clippingBits != 0 || subpixel);
}
//////////////////////////////////////////////////////////////////
#ifndef USE_VIEWPORTCULL
#define USE_VIEWPORTCULL 1
#endif
#ifndef USE_TRIANGLECULL
#define USE_TRIANGLECULL 1
#endif
vec2 getScreenPos(vec4 hPos)
{
hPos /= hPos.w;
return vec2((hPos.xy * 0.5 + 0.5) * scene.viewportf);
}
bool testTriangle(vec2 a, vec2 b, vec2 c, float winding, bool frustum)
{
#if !USE_TRIANGLECULL
{ return true; }
#endif
#if USE_BACKFACECULL
// back face culling
vec2 ab = b.xy - a.xy;
vec2 ac = c.xy - a.xy;
float cross_product = ab.x * ac.y - ab.y * ac.x;
#if IS_VULKAN
// Vulkan's upper-left window origin means that screen coordinates
// are reversed relative to OpenGL's. Reverse the sign of the
// cross-product to compensate.
cross_product = -cross_product;
#endif
if (cross_product * winding < 0) return false;
#endif
#if USE_VIEWPORTCULL || USE_SUBPIXELCULL
// compute the min and max in each X and Y direction
vec2 pixelMin = min(a,min(b,c));
vec2 pixelMax = max(a,max(b,c));
#endif
#if USE_VIEWPORTCULL
// viewport culling
if (frustum && ((pixelMax.x < 0) || (pixelMin.x >= scene.viewportf.x) || (pixelMax.y < 0) || (pixelMin.y >= scene.viewportf.y))) return false;
#endif
#if USE_SUBPIXELCULL
if (pixelBboxCull(pixelMin, pixelMax)) return false;
#endif
return true;
}
bool testTriangle(vec2 a, vec2 b, vec2 c, float winding, uint abits, uint bbits, uint cbits)
{
if ((abits & bbits & cbits) == 0){
return testTriangle(a,b,c,winding,false);
}
return false;
}