forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhash.h
363 lines (308 loc) · 10.3 KB
/
hash.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#pragma once
#include <functional>
#include <iomanip>
#include <sstream>
#include <vector>
#include <c10/util/ArrayRef.h>
#include <c10/util/complex.h>
namespace c10 {
// NOTE: hash_combine and SHA1 hashing is based on implementation from Boost
//
// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
inline size_t hash_combine(size_t seed, size_t value) {
return seed ^ (value + 0x9e3779b9 + (seed << 6u) + (seed >> 2u));
}
// Creates the SHA1 hash of a string. A 160-bit hash.
// Based on the implementation in Boost (see notice above).
// Note that SHA1 hashes are no longer considered cryptographically
// secure, but are the standard hash for generating unique ids.
// Usage:
// // Let 'code' be a std::string
// c10::sha1 sha1_hash{code};
// const auto hash_code = sha1_hash.str();
// TODO: Compare vs OpenSSL and/or CryptoPP implementations
struct sha1 {
typedef unsigned int(digest_type)[5];
sha1(const std::string& s = "") {
if (!s.empty()) {
reset();
process_bytes(s.c_str(), s.size());
}
}
void reset() {
h_[0] = 0x67452301;
h_[1] = 0xEFCDAB89;
h_[2] = 0x98BADCFE;
h_[3] = 0x10325476;
h_[4] = 0xC3D2E1F0;
block_byte_index_ = 0;
bit_count_low = 0;
bit_count_high = 0;
}
std::string str() {
unsigned int digest[5];
get_digest(digest);
std::ostringstream buf;
for (unsigned int i : digest) {
buf << std::hex << std::setfill('0') << std::setw(8) << i;
}
return buf.str();
}
private:
unsigned int left_rotate(unsigned int x, std::size_t n) {
return (x << n) ^ (x >> (32 - n));
}
void process_block_impl() {
unsigned int w[80];
for (std::size_t i = 0; i < 16; ++i) {
w[i] = (block_[i * 4 + 0] << 24);
w[i] |= (block_[i * 4 + 1] << 16);
w[i] |= (block_[i * 4 + 2] << 8);
w[i] |= (block_[i * 4 + 3]);
}
for (std::size_t i = 16; i < 80; ++i) {
w[i] = left_rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1);
}
unsigned int a = h_[0];
unsigned int b = h_[1];
unsigned int c = h_[2];
unsigned int d = h_[3];
unsigned int e = h_[4];
for (std::size_t i = 0; i < 80; ++i) {
unsigned int f;
unsigned int k;
if (i < 20) {
f = (b & c) | (~b & d);
k = 0x5A827999;
} else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
} else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
unsigned temp = left_rotate(a, 5) + f + e + k + w[i];
e = d;
d = c;
c = left_rotate(b, 30);
b = a;
a = temp;
}
h_[0] += a;
h_[1] += b;
h_[2] += c;
h_[3] += d;
h_[4] += e;
}
void process_byte_impl(unsigned char byte) {
block_[block_byte_index_++] = byte;
if (block_byte_index_ == 64) {
block_byte_index_ = 0;
process_block_impl();
}
}
void process_byte(unsigned char byte) {
process_byte_impl(byte);
// size_t max value = 0xFFFFFFFF
// if (bit_count_low + 8 >= 0x100000000) { // would overflow
// if (bit_count_low >= 0x100000000-8) {
if (bit_count_low < 0xFFFFFFF8) {
bit_count_low += 8;
} else {
bit_count_low = 0;
if (bit_count_high <= 0xFFFFFFFE) {
++bit_count_high;
} else {
TORCH_CHECK(false, "sha1 too many bytes");
}
}
}
void process_block(void const* bytes_begin, void const* bytes_end) {
unsigned char const* begin = static_cast<unsigned char const*>(bytes_begin);
unsigned char const* end = static_cast<unsigned char const*>(bytes_end);
for (; begin != end; ++begin) {
process_byte(*begin);
}
}
void process_bytes(void const* buffer, std::size_t byte_count) {
unsigned char const* b = static_cast<unsigned char const*>(buffer);
process_block(b, b + byte_count);
}
void get_digest(digest_type& digest) {
// append the bit '1' to the message
process_byte_impl(0x80);
// append k bits '0', where k is the minimum number >= 0
// such that the resulting message length is congruent to 56 (mod 64)
// check if there is enough space for padding and bit_count
if (block_byte_index_ > 56) {
// finish this block
while (block_byte_index_ != 0) {
process_byte_impl(0);
}
// one more block
while (block_byte_index_ < 56) {
process_byte_impl(0);
}
} else {
while (block_byte_index_ < 56) {
process_byte_impl(0);
}
}
// append length of message (before pre-processing)
// as a 64-bit big-endian integer
process_byte_impl(
static_cast<unsigned char>((bit_count_high >> 24) & 0xFF));
process_byte_impl(
static_cast<unsigned char>((bit_count_high >> 16) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_high >> 8) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_high)&0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 24) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 16) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 8) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low)&0xFF));
// get final digest
digest[0] = h_[0];
digest[1] = h_[1];
digest[2] = h_[2];
digest[3] = h_[3];
digest[4] = h_[4];
}
unsigned int h_[5];
unsigned char block_[64];
std::size_t block_byte_index_;
std::size_t bit_count_low;
std::size_t bit_count_high;
};
////////////////////////////////////////////////////////////////////////////////
// c10::hash implementation
////////////////////////////////////////////////////////////////////////////////
namespace _hash_detail {
// Use template argument deduction to shorten calls to c10::hash
template <typename T>
size_t simple_get_hash(const T& o);
template <typename T, typename V>
using type_if_not_enum =
typename std::enable_if<!std::is_enum<T>::value, V>::type;
// Use SFINAE to dispatch to std::hash if possible, cast enum types to int
// automatically, and fall back to T::hash otherwise. NOTE: C++14 added support
// for hashing enum types to the standard, and some compilers implement it even
// when C++14 flags aren't specified. This is why we have to disable this
// overload if T is an enum type (and use the one below in this case).
template <typename T>
auto dispatch_hash(const T& o)
-> decltype(std::hash<T>()(o), type_if_not_enum<T, size_t>()) {
return std::hash<T>()(o);
}
template <typename T>
typename std::enable_if<std::is_enum<T>::value, size_t>::type dispatch_hash(
const T& o) {
using R = typename std::underlying_type<T>::type;
return std::hash<R>()(static_cast<R>(o));
}
template <typename T>
auto dispatch_hash(const T& o) -> decltype(T::hash(o), size_t()) {
return T::hash(o);
}
} // namespace _hash_detail
// Hasher struct
template <typename T>
struct hash {
size_t operator()(const T& o) const {
return _hash_detail::dispatch_hash(o);
};
};
// Specialization for std::tuple
template <typename... Types>
struct hash<std::tuple<Types...>> {
template <size_t idx, typename... Ts>
struct tuple_hash {
size_t operator()(const std::tuple<Ts...>& t) const {
return hash_combine(
_hash_detail::simple_get_hash(std::get<idx>(t)),
tuple_hash<idx - 1, Ts...>()(t));
}
};
template <typename... Ts>
struct tuple_hash<0, Ts...> {
size_t operator()(const std::tuple<Ts...>& t) const {
return _hash_detail::simple_get_hash(std::get<0>(t));
}
};
size_t operator()(const std::tuple<Types...>& t) const {
return tuple_hash<sizeof...(Types) - 1, Types...>()(t);
}
};
template <typename T1, typename T2>
struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2>& pair) const {
std::tuple<T1, T2> tuple = std::make_tuple(pair.first, pair.second);
return _hash_detail::simple_get_hash(tuple);
}
};
template <typename T>
struct hash<c10::ArrayRef<T>> {
size_t operator()(c10::ArrayRef<T> v) const {
size_t seed = 0;
for (const auto& elem : v) {
seed = hash_combine(seed, _hash_detail::simple_get_hash(elem));
}
return seed;
}
};
// Specialization for std::vector
template <typename T>
struct hash<std::vector<T>> {
size_t operator()(const std::vector<T>& v) const {
return hash<c10::ArrayRef<T>>()(v);
}
};
namespace _hash_detail {
template <typename T>
size_t simple_get_hash(const T& o) {
return c10::hash<T>()(o);
}
} // namespace _hash_detail
// Use this function to actually hash multiple things in one line.
// Dispatches to c10::hash, so it can hash containers.
// Example:
//
// static size_t hash(const MyStruct& s) {
// return get_hash(s.member1, s.member2, s.member3);
// }
template <typename... Types>
size_t get_hash(const Types&... args) {
return c10::hash<decltype(std::tie(args...))>()(std::tie(args...));
}
// Specialization for c10::complex
template <typename T>
struct hash<c10::complex<T>> {
size_t operator()(const c10::complex<T>& c) const {
return get_hash(c.real(), c.imag());
}
};
} // namespace c10