forked from allenai/WildBench
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathhf_models.py
358 lines (300 loc) · 16 KB
/
hf_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import LlamaTokenizer, LlamaForCausalLM
import transformers
import torch
import os
import json
from transformers import BitsAndBytesConfig
from transformers import StoppingCriteria, StoppingCriteriaList, LogitsProcessor, LogitsProcessorList
import openai
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
class EndOfFunctionCriteria(StoppingCriteria):
"""Custom `StoppingCriteria` which checks if all generated functions in the batch are completed."""
def __init__(self, start_length, eof_strings, tokenizer):
self.start_length = start_length
self.eof_strings = eof_strings
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
"""Returns true if all generated sequences contain any of the end-of-function strings."""
decoded_generations = self.tokenizer.batch_decode(
input_ids[:, self.start_length :]
)
done = []
for decoded_generation in decoded_generations:
done.append(
any(
[
stop_string in decoded_generation
for stop_string in self.eof_strings
]
)
)
return all(done) # Stop when ALL sequences hit the stopping critera
# return True if True in done # Stop when ANY sequence hits the stopping critera
# class BiasWordsLogitsProcessor(LogitsProcessor):
# def __init__(self, tokenizer, bias_words, bias_value):
# self.tokenizer = tokenizer
# self.bias_words = bias_words
# self.bias_value = bias_value
# def __call__(self, input_ids, scores):
# word_indices = []
# for word in self.bias_words:
# word_indices += self.tokenizer.encode(word)
# for idx in word_indices:
# scores[:, idx] += self.bias_value
# return scores
class BiasWordsLogitsProcessor(LogitsProcessor):
def __init__(self, tokenizer, bias_words, bias_value, window=3):
self.tokenizer = tokenizer
self.bias_word_tokens = [self.tokenizer.encode(word) for word in bias_words]
self.bias_value = bias_value
self.window = window
def __call__(self, input_ids, scores):
last_k_tokens = input_ids[0, -self.window:].tolist()
for token_ids in self.bias_word_tokens:
# Check if the target word tokens are in the last K tokens
if not any(token_id in last_k_tokens for token_id in token_ids):
for idx in token_ids:
scores[:, idx] += self.bias_value
return scores
class ModelManager:
def __init__(self, model_path, model_name):
self.model_path = model_path
self.model_name = model_name
def load_model(self):
# Load model from disk
pass
def infer_logits(self, input_data):
# Run model inference to get logits
pass
def infer_generate(self, input_data):
# Run model inference to generate output
pass
class DecoderOnlyModelManager(ModelManager):
def __init__(self, model_path, model_name, cache_dir=None, bf16=False, int8=False, bnb4=False, gptq=False, adapt_mode=None, adapt_ckpt=None):
super().__init__(model_path, model_name)
self.cache_dir = cache_dir
self.bf16 = bf16
self.bnb4 = bnb4
self.int8 = int8
self.gptq = gptq
self.adapt_mode = adapt_mode
self.adapt_ckpt = adapt_ckpt
def _load_adapt_model(self):
if self.adapt_ckpt == "fixed":
return
print(f"Loading adapt model from {self.adapt_ckpt}...")
self.adapt_tokenizer = AutoTokenizer.from_pretrained(self.adapt_ckpt)
self.adapt_model = AutoModelForSeq2SeqLM.from_pretrained(self.adapt_ckpt)
if torch.cuda.is_available():
self.adapt_model = self.adapt_model.to("cuda:0")
return
def load_model(self, device_str="cuda:0"):
if self.adapt_mode in ["prefix", "retrieve+prefix"]:
self._load_adapt_model()
# self.adapt_model.to(device_str)
print("loading model: ", self.model_name, "from", self.model_path)
model_path = self.model_path
if "@" in self.model_path:
model_path, revision = model_path.split("@")
else:
revision = None
self.tokenizer = AutoTokenizer.from_pretrained(model_path, revision=revision, trust_remote_code=True, cache_dir=self.cache_dir, padding_side="left")
self.special_token_flags = [True, False]
if self.bf16:
# config = transformers.AutoConfig.from_pretrained(model_path, trust_remote_code=True)
# config.attn_config['attn_impl'] = 'triton'
# config.init_device = 'cuda:0' # For fast initialization directly on GPU!
self.model = AutoModelForCausalLM.from_pretrained(model_path, revision=revision, trust_remote_code=True, device_map="auto",
torch_dtype=torch.bfloat16,
cache_dir=self.cache_dir)
# .to(device_str)
elif self.int8:
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 0,
"model.layers":"cpu",
"model.norm":"cpu"
}
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
self.model = AutoModelForCausalLM.from_pretrained(model_path, revision=revision, trust_remote_code=True,
device_map=device_map,
quantization_config=quantization_config,
cache_dir=self.cache_dir)
elif self.bnb4:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
self.model = AutoModelForCausalLM.from_pretrained(model_path, revision=revision, trust_remote_code=True, device_map="auto",
quantization_config=bnb_config, cache_dir=self.cache_dir)
elif self.gptq:
from auto_gptq import exllama_set_max_input_length
self.model = AutoModelForCausalLM.from_pretrained(model_path, revision="main", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, cache_dir=self.cache_dir)
if "llama" in model_path.lower():
self.model = exllama_set_max_input_length(self.model, 4096)
else:
torch_dtype = torch.float16
self.model = AutoModelForCausalLM.from_pretrained(model_path, revision=revision, trust_remote_code=True, device_map="auto", cache_dir=self.cache_dir, torch_dtype=torch_dtype)
print(f"(initial) self.tokenizer.pad_token_id={self.tokenizer.pad_token_id}")
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.tokenizer.padding_side = "left"
print(f"(updated) self.tokenizer.pad_token_id={self.tokenizer.pad_token_id}")
self.model.eval()
print("model device:", self.model.device)
def _adapt_with_prefix(self, input_data, pure_input_data, n=3, args=None):
if self.adapt_ckpt == "fixed":
decoded_outputs = [["The answer is: "] for _ in range(len(input_data))]
# print(input_data_clean)
# print(len(input_data_clean), input_data)
else:
inputs = self.adapt_tokenizer(pure_input_data, return_tensors="pt", add_special_tokens=True, padding=False).to(self.adapt_model.device)
outputs = self.adapt_model.generate(
input_ids=inputs['input_ids'].to(self.adapt_model.device),
attention_mask=inputs['attention_mask'].to(self.adapt_model.device),
# pad_token_id=self.adapt_tokenizer.eos_token_id,
do_sample=False, num_beams=n,
# do_sample=True, top_p=0.7, temperature=0.5,
num_return_sequences=n,
max_new_tokens=10, # for the outputs
)
decoded_outputs = [self.adapt_tokenizer.decode(y, skip_special_tokens=True) for y in outputs]
decoded_outputs = [decoded_outputs[j:j+n] for j in range(0, len(decoded_outputs), n)]
input_data_with_prefixes = []
prefixes = []
for prompt, outs in zip(input_data, decoded_outputs):
prefix = outs[0]
for d in outs:
if set(d.split()).intersection(set(prompt.split())):
prefix = d
break
input_data_with_prefixes.append(prompt + prefix.strip()) # TODO:
prefixes.append(prefix.strip())
return prefixes, input_data_with_prefixes
def infer_generate(self, input_data, args={}, device=None, remarks=None, pure_input_data=None):
if self.adapt_mode in ["prefix", "retrieve+prefix"]:
prefixes, input_data = self._adapt_with_prefix(input_data, pure_input_data, args=args)
if not device:
device = self.model.device
if type(args) is dict:
class Args:
pass
args_ = Args()
args_.__setattr__("num_outputs", args.get("num_outputs", 1))
args_.__setattr__("beam_size", args.get("beam_size", 1))
args_.__setattr__("max_output_tokens", args.get("max_output_tokens", 2048))
args_.__setattr__("do_sample", args.get("do_sample", False))
args_.__setattr__("top_p", args.get("top_p", 1.0))
args_.__setattr__("top_k", args.get("top_k", None))
args_.__setattr__("temperature", args.get("temperature", 1.0))
args_.__setattr__("repetition_penalty", args.get("repetition_penalty", 1.0))
args_.__setattr__("penalty_alpha", args.get("penalty_alpha", 0))
args_.__setattr__("no_repeat_ngram_size", args.get("no_repeat_ngram_size", 0))
args_.__setattr__("length_penalty", args.get("length_penalty", 1.0))
args_.__setattr__("force_words", args.get("force_words", ""))
args_.__setattr__("eof_strings", args.get("eof_strings", ""))
args = args_
if args.eof_strings and "|" in args.eof_strings:
eof_strings = [s.strip() for s in args.eof_strings.split("|")]
stopping_criteria = StoppingCriteriaList([EndOfFunctionCriteria(start_length=prefix_length, eof_strings=eof_strings, tokenizer=self.tokenizer)])
else:
eof_strings = None
stopping_criteria = None
# Run Llama model inference to generate output
if len(input_data) > 1:
padding = True
# print("Enable padding.")
else:
padding = False
n = 1 if args.num_outputs < 0 else args.num_outputs
if args.num_outputs < 0:
input_data = [in_text for _ in range(n) for in_text in input_data]
inputs = self.tokenizer(input_data, return_tensors="pt", add_special_tokens=self.special_token_flags[0], padding=padding)
_, prefix_length = inputs["input_ids"].shape
# print(f"prefix_length: {prefix_length}")
low_memory = False
if args.penalty_alpha > 0:
# low_memory = True # if the memory is not enough for you
pass
# print(f"args.max_output_tokens={args.max_output_tokens}")
outputs = self.model.generate(
input_ids=inputs['input_ids'].to(device),
attention_mask=inputs['attention_mask'].to(device),
pad_token_id=self.tokenizer.pad_token_id,
do_sample=args.do_sample,
top_p=args.top_p, top_k=args.top_k,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
no_repeat_ngram_size=args.no_repeat_ngram_size,
length_penalty=args.length_penalty,
num_return_sequences=n,
num_beams=1 if args.do_sample else max(args.beam_size, n),
low_memory =low_memory,
# num_beam_groups= 1 if args.do_sample else n,
# diversity_penalty= 0.0 if args.do_sample else 10.0,
max_new_tokens=args.max_output_tokens, # for the outputs
stopping_criteria=stopping_criteria, # Debug
# force_words_ids=force_words_ids,
# logits_processor=logits_processor,
# sequence_bias=sequence_bias,
)
# decoded_outputs = [self.tokenizer.decode(y).strip() for y in outputs]
decoded_outputs = [self.tokenizer.decode(y[prefix_length:], skip_special_tokens=self.special_token_flags[1]) for y in outputs]
# print(f"dectoded_outputs v1: {decoded_outputs}")
decoded_outputs = [decoded_outputs[j:j+n] for j in range(0, len(decoded_outputs), n)]
# print(f"dectoded_outputs v2: {decoded_outputs}")
if eof_strings is not None and len(eof_strings) > 0:
cleaned_decoded_outputs = []
eof_strings.sort(key=len, reverse=True)
for outputs in decoded_outputs:
stripped_outputs = []
for o in outputs:
for eof in eof_strings:
o = o.rstrip(eof).strip()
stripped_outputs.append(o)
cleaned_decoded_outputs.append(stripped_outputs)
decoded_outputs = cleaned_decoded_outputs
if self.adapt_mode in ["prefix", "retrieve+prefix"]:
decoded_outputs_with_prefixes = []
for prefix, outputs in zip(prefixes, decoded_outputs):
tmp_otuputs = [prefix + " " + o for o in outputs]
decoded_outputs_with_prefixes.append(tmp_otuputs)
if remarks is not None:
remarks.append([prefix])
decoded_outputs = decoded_outputs_with_prefixes
return decoded_outputs
@retry(wait=wait_random_exponential(min=1, max=30), stop=stop_after_attempt(30))
def completion_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
class OpenAIModelManager(ModelManager):
def __init__(self, model_name):
super().__init__(model_name, model_name)
def load_model(self):
assert openai.api_key is not None
def infer_generate(self, input_data, args={}, device=None, remarks=[], pure_input_data=None):
outputs = []
for input_text in input_data:
n = args.num_outputs
completion = completion_with_backoff(
model=self.model_name,
messages=[
{"role": "user", "content": input_text}
],
n=n, temperature=0, top_p=1,
max_tokens=args.max_output_tokens,
)
finished_reason = completion.choices[0].finish_reason
outputs.append([completion.choices[j].message["content"].strip() for j in range(n)])
remarks.append({"finished_reason": finished_reason})
return outputs