forked from allenai/WildBench
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathunified_utils.py
792 lines (746 loc) · 29.1 KB
/
unified_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import sys
import os
import time
from functools import wraps
from typing import List
import openai
if openai.__version__ == "0.28.0":
OPENAI_RATE_LIMIT_ERROR = openai.error.RateLimitError
OPENAI_API_ERROR = openai.error.APIError
else:
from openai import OpenAI
OPENAI_RATE_LIMIT_ERROR = openai.RateLimitError
OPENAI_API_ERROR = openai.APIError
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
import google.generativeai as genai
import cohere
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from anthropic import Anthropic
from reka.client import Reka
from datasets import load_dataset
from tqdm import tqdm
from fastchat_conversation import map_to_conv, HF_Conversation
import json
from together import Together
from task_configs import mapping_task_names, prompt_generation, result_format
def apply_template(chat_history, model_name, args):
model_inputs = []
conv = None
for chats in tqdm(chat_history, desc="Applying template", disable=True):
if args.engine not in ["vllm", "hf"]:
model_inputs.append("n/a") # will be handled by another ways.
continue
else:
if conv is None or isinstance(conv, HF_Conversation) == False:
conv = map_to_conv(model_name)
else:
conv.clear()
for chat_id, chat in enumerate(chats):
conv.append_message(conv.roles[chat_id % 2], chat)
conv.append_message(conv.roles[1], None)
model_inputs.append(conv.get_prompt())
return model_inputs
def load_eval_data(args, data_name=None, model_name=None):
if data_name is None:
data_name = args.data_name
if model_name is None:
model_name = args.model_name
if args.follow_up_mode == "N/A":
chat_history = []
id_strs = []
metadata = {}
dataset, id_name = mapping_task_names(data_name)
print(f"Loaded {len(dataset)} examples from {data_name}")
for ind, item in enumerate(dataset):
id_strs.append(item.get(id_name, f"{data_name}#{ind}"))
prompt = prompt_generation(data_name, item, args)
chat_history.append([prompt])
for key in item:
if key not in metadata:
metadata[key] = []
metadata[key].append(item[key])
elif args.follow_up_mode != "N/A" and os.path.exists(args.follow_up_file):
# load the file and use the content there to load the chat history, id_strs, and metadata, etc.
with open(args.follow_up_file, "r") as f:
follow_up_data = json.load(f)
print(f"Loaded {len(follow_up_data)} examples from {args.follow_up_file}")
id_strs = []
chat_history = []
metadata = {}
for item in follow_up_data:
id_strs.append(item.get("session_id", "N/A"))
chat_history.append(item.get("chat_history", []))
for key in item:
if key in [
"configs",
"model_input",
"generator",
"output",
"session_id",
"chat_history",
]:
continue
if key not in metadata:
metadata[key] = []
metadata[key].append(item[key])
print("Start applying template")
model_inputs = apply_template(chat_history, model_name, args)
return id_strs, chat_history, model_inputs, metadata
def clear_output(output, model_name):
"""
You can customize the output clearing logic here based on the model_name.
"""
if isinstance(output, list):
output = output[0]
assert isinstance(output, str), f"the type of output is {type(output)}"
# print(f"the output is {output}")
output = output.replace("<|endoftext|>", " ")
output = output.replace("<pad>", " ")
output = output.replace("<end_of_turn>", " ")
output = output.strip()
return output
def save_outputs(
args, id_strs, outputs, chat_history, metadata, model_inputs, filepath
):
formatted_outputs = []
for ind in range(len(outputs)):
output_item = {}
output_item["session_id"] = id_strs[ind]
output_item["chat_history"] = chat_history[ind]
output_item["model_input"] = model_inputs[ind]
output_item["output"] = [clear_output(o, args.model_name) for o in outputs[ind]]
output_item["generator"] = args.model_name
output_item["configs"] = {
"engine": args.engine,
"repetition_penalty": args.repetition_penalty,
"temperature": args.temperature,
"top_p": args.top_p,
"max_tokens": args.max_tokens,
# "cot": args.cot,
}
output_item["dataset"] = args.data_name
for key in metadata:
if key in output_item:
continue
if ind < len(metadata[key]):
output_item[key] = metadata[key][ind]
output_item = result_format(output_item, args)
formatted_outputs.append(output_item)
if not os.path.exists(os.path.dirname(filepath)):
os.makedirs(os.path.dirname(filepath))
with open(filepath, "w") as f:
json.dump(formatted_outputs, f, indent=2)
def retry_handler(retry_limit=10):
"""
This is an error handler for requests to OpenAI API.
If will retry for the request for `retry_limit` times if the error is not a rate limit error.
Otherwise, it will wait for the time specified in the error message and constantly retry.
You can add specific processing logic for different types of errors here.
Args:
retry_limit (int, optional): The number of times to retry. Defaults to 3.
Usage:
@retry_handler(retry_limit=3)
def call_openai_api():
pass
"""
def decorate(func):
@wraps(func)
def wrapper(*args, **kwargs):
retried = 0
flag_cohere_retry = False
while True:
try:
sys.stdout.flush()
if flag_cohere_retry:
kwargs["shorten_msg_times"] = retried
return func(*args, **kwargs)
except Exception as e:
print(e)
# if rate limit error, wait 2 seconds and retry
if (
isinstance(e, OPENAI_RATE_LIMIT_ERROR)
or "exhausted" in str(e).lower()
):
words = str(e).split(" ")
try:
time_to_wait = int(words[words.index("after") + 1])
except ValueError:
time_to_wait = 15
print(
"Rate limit error, waiting for {} seconds for another try..".format(
time_to_wait
)
)
time.sleep(time_to_wait) # wait 30 seconds
# print("Finished waiting for {} seconds. Start another try".format(time_to_wait))
elif isinstance(e, OPENAI_API_ERROR):
# this is because the prompt contains content that is filtered by OpenAI API
print("API error:", str(e))
if "invalid" in str(e).lower():
print("Invalid request, returning.")
retried = retry_limit
if kwargs["model"].startswith("o1-"):
return [
"API Error: this query is blocked by APIs. "
+ str(e)
], -1
return [
"API Error: this query is blocked by APIs. " + str(e)
]
else:
err_msg = str(e)
print(e.__class__.__name__ + ":", err_msg)
if "`inputs` tokens + `max_new_tokens` must be <=" in err_msg:
print("Exceeding max tokens issue! (in together.ai)")
return [""]
if retried < retry_limit:
if (
"cohere" in e.__class__.__name__.lower()
and "prompt exceeds context length" in err_msg
):
print("cohere prompt length issue!")
flag_cohere_retry = True
return [
""
] # return empty strings for prompt longer than context window size, comment out this line to truncate prompt until it fits
if "blocked" in err_msg:
print("blocked output issue!")
return ["Error: this query is blocked by APIs."]
# raise e
print(f"Retrying for the {retried + 1} time..")
# if 'output blocked by content filtering policy' in err_msg.lower():
# raise e
else:
# finally failed
if (
"cohere" in e.__class__.__name__.lower()
and "blocked output" in err_msg
):
print("cohere blocked output issue!")
return [
""
] # return empty strings for prompt longer than context window size, comment out this line to truncate prompt until it fits
if "The read operation timed out" in err_msg:
print("reka time out issue!")
return [
""
] # return empty strings for prompt longer than context window size, comment out this line to truncate prompt until it fits
print(
"Retry limit reached. Saving the error message and returning."
)
print(kwargs["prompt"])
raise e
retried += 1
return wrapper
return decorate
def openai_chat_request(
model: str = None,
engine: str = None,
temperature: float = 0,
max_tokens: int = 512,
top_p: float = 1.0,
frequency_penalty: float = 0,
presence_penalty: float = 0,
prompt: str = None,
n: int = 1,
messages: List[dict] = None,
stop: List[str] = None,
json_mode: bool = False,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
engine (str): The engine to use.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
frequency_penalty (float, optional): The frequency penalty. Defaults to 0.
presence_penalty (float, optional): The presence penalty. Defaults to 0.
stop (List[str], optional): The stop. Defaults to None.
Returns:
List[str]: The list of generated evaluation prompts.
"""
# Call openai api to generate aspects
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": prompt},
]
if openai.__version__ == "0.28.0":
response = openai.ChatCompletion.create(
model=model,
response_format={"type": "json_object"} if json_mode else None,
engine=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
n=n,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop=stop,
**kwargs,
)
contents = []
for choice in response["choices"]:
# Check if the response is valid
if choice["finish_reason"] not in ["stop", "length"]:
raise ValueError(
f"OpenAI Finish Reason Error: {choice['finish_reason']}"
)
contents.append(choice["message"]["content"])
else:
nvidia_mode = False
o1_mode = False
# for version > 1.0
if "deepseek" in model:
assert (
os.environ.get("DEEPSEEK_API_KEY") is not None
), "Please set DEEPSEEK_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("DEEPSEEK_API_KEY"),
base_url="https://api.deepseek.com/v1",
)
elif "yi-" in model:
assert (
os.environ.get("YI_API_KEY") is not None
), "Please set YI_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("YI_API_KEY"),
base_url="https://api.lingyiwanwu.com/v1",
)
elif model.endswith("@nvidia"):
assert (
os.environ.get("NVIDIA_API_KEY") is not None
), "Please set NVIDIA_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("NVIDIA_API_KEY"),
base_url="https://integrate.api.nvidia.com/v1",
)
model = model.replace("@nvidia", "")
nvidia_mode = True
elif model.endswith("@hyperbolic"):
assert (
os.environ.get("HYPERBOLIC_API_KEY") is not None
), "Please set HYPERBOLIC_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("HYPERBOLIC_API_KEY"),
base_url="https://api.hyperbolic.xyz/v1",
)
model = model.replace("@hyperbolic", "")
elif model.endswith("@sambanova"):
assert (
os.environ.get("SAMBANOVA_API_KEY") is not None
), "Please set SAMBANOVA_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
model = model.replace("@sambanova", "")
elif model.endswith("@lepton"):
assert (
os.environ.get("LEPTON_API_TOKEN") is not None
), "Please set LEPTON_API_TOKEN in the environment variables."
client = openai.OpenAI(
base_url="https://llama3-1-405b.lepton.run/api/v1/",
api_key=os.environ.get("LEPTON_API_TOKEN"),
)
model = model.replace("@lepton", "")
# print(model, client.api_key, client.base_url)
elif model.endswith("@xai"):
assert (
os.environ.get("XAI_API_KEY") is not None
), "Please set XAI_API_KEY in the environment variables."
client = OpenAI(
api_key=os.environ.get("XAI_API_KEY"),
base_url="https://api.x.ai/v1",
)
model = model.replace("@xai", "")
else:
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model = model.split("/")[-1]
if nvidia_mode:
# print(f"Requesting chat completion from OpenAI API with model {model}")
# remove system message
if messages[0]["role"] == "system":
messages = messages[1:]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.001 if temperature == 0 else temperature,
max_tokens=max_tokens,
top_p=top_p,
# n=n,
# stop=stop,
**kwargs,
)
else:
# print(f"Requesting chat completion from OpenAI API with model {model}")
if model.startswith("o1-") or model.startswith("o3-"):
o1_mode = True
if messages[0]["role"] == "system":
messages = messages[1:]
reasoning_effort = None
if "-high" in model:
reasoning_effort = "high"
elif "-medium" in model:
reasoning_effort = "medium"
elif "-low" in model:
reasoning_effort = "low"
if reasoning_effort is not None:
model = model.replace("-"+reasoning_effort, "")
kwargs["reasoning_effort"] = reasoning_effort
response = client.chat.completions.create(
model=model,
response_format={"type": "json_object"} if json_mode else None,
messages=messages,
top_p=top_p,
n=n,
# temperature=temperature,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
**kwargs,
)
hidden_reasoning_tokens = (
response.usage.completion_tokens_details.reasoning_tokens
)
else:
response = client.chat.completions.create(
model=model,
response_format={"type": "json_object"} if json_mode else None,
messages=messages,
temperature=temperature,
max_completion_tokens=max_tokens, # new version
top_p=top_p,
n=n,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop=stop,
**kwargs,
)
# print(f"Received response from OpenAI API with model {model}")
contents = []
for choice in response.choices:
# Check if the response is valid
if choice.finish_reason not in ["stop", "length"]:
if "content_filter" in choice.finish_reason:
contents.append("Error: content filtered due to OpenAI policy. ")
else:
raise ValueError(
f"OpenAI Finish Reason Error: {choice.finish_reason}"
)
contents.append(choice.message.content.strip())
if o1_mode:
return contents, hidden_reasoning_tokens
return contents
def together_chat_request(
model: str = None,
engine: str = None,
temperature: float = 0,
max_tokens: int = 4096,
top_p: float = 1.0,
repetition_penalty: float = 0,
prompt: str = None,
n: int = 1,
messages: List[dict] = None,
stop: List[str] = None,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
engine (str): The engine to use.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
repetition_penalty (float, optional): The presence penalty. Defaults to 0.
stop (List[str], optional): The stop. Defaults to None.
Returns:
List[str]: The list of generated evaluation prompts.
"""
# Call openai api to generate aspects
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [{"role": "user", "content": prompt}]
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
n=n,
repetition_penalty=repetition_penalty,
stop=stop,
**kwargs,
)
# print(response.choices[0].message.content)
contents = []
for choice in response.choices:
contents.append(choice.message.content)
return contents
def google_chat_request(
model: str = None,
generation_config: dict = None,
prompt: str = None,
messages: List[dict] = None,
) -> List[str]:
"""
Request the evaluation prompt from the Google API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
generation_config (dict): Generation configurations.
Returns:
List[str]: The list of generated evaluation prompts.
"""
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [
{
"role": "user",
"parts": [
"You are an AI assistant that helps people find information."
],
},
{"role": "model", "parts": ["Understood."]},
{"role": "user", "parts": [prompt]},
]
api_key = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=api_key)
google_model = genai.GenerativeModel(model)
response = google_model.generate_content(
messages,
generation_config=genai.GenerationConfig(
max_output_tokens=generation_config["max_output_tokens"],
temperature=generation_config["temperature"],
stop_sequences=generation_config["stop_sequences"],
top_p=generation_config["top_p"],
),
request_options={"timeout": 1000},
)
if len(response.candidates) == 0:
output = ""
else:
candidate = response.candidates[0]
if candidate.finish_reason != 1 and candidate.finish_reason != 2:
output = ""
else:
output = candidate.content.parts[0].text
contents = [output]
return contents
def cohere_chat_request(
model: str = None,
system_msg: str = None,
temperature: float = 0,
max_tokens: int = 512,
top_p: float = 1.0,
prompt: str = None,
shorten_msg_times: int = 0,
messages: List[dict] = None,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
Returns:
List[str]: The list of generated evaluation prompts.
"""
# Call openai api to generate aspects
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [{"role": "User", "message": prompt}]
api_key = os.getenv("COHERE_API_KEY")
co = cohere.Client(api_key)
assert messages[-1]["role"] == "User", messages[-1]["role"]
chat_history = messages[:-1]
message = messages[-1]["message"]
for _ in range(shorten_msg_times):
if len(chat_history) > 0:
if _ == shorten_msg_times - 1:
print("removing past context")
chat_history = chat_history[2:]
else:
msg_len = len(message)
msg_len = msg_len // 2
if _ == shorten_msg_times - 1:
print(f"shorten msg len to {msg_len}")
message = message[msg_len:]
if len(chat_history) == 0:
chat_history = None
response = co.chat(
message=message,
preamble=system_msg,
chat_history=chat_history,
model=model,
temperature=temperature,
p=top_p,
max_tokens=max_tokens,
prompt_truncation="AUTO",
)
return [response.text]
def mistral_chat_request(
model: str = None,
engine: str = None,
temperature: float = 0,
max_tokens: int = 512,
top_p: float = 1.0,
prompt: str = None,
messages: List[dict] = None,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
engine (str): The engine to use.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
Returns:
List[str]: The list of generated evaluation prompts.
"""
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [
{
"role": "system",
"content": "You are an AI assistant that helps people find information.",
},
{"role": "user", "content": prompt},
]
api_key = os.getenv("MISTRAL_API_KEY")
client = MistralClient(api_key=api_key)
response = client.chat(
model=model,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
messages=[
ChatMessage(role=message["role"], content=message["content"])
for message in messages
],
)
contents = []
for choice in response.choices:
contents.append(choice.message.content)
return contents
def anthropic_chat_request(
model: str = None,
engine: str = None,
temperature: float = 0,
max_tokens: int = 512,
top_p: float = 1.0,
prompt: str = None,
system_msg: str = None,
messages: List[dict] = None,
stop: List[str] = None,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
engine (str): The engine to use.
system_msg (str): The system prompt.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
stop (List[str], optional): The stop. Defaults to None.
Returns:
List[str]: The list of generated evaluation prompts.
"""
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [{"role": "user", "content": prompt}]
api_key = os.getenv("ANTHROPIC_API_KEY")
client = Anthropic(api_key=api_key)
response = client.messages.create(
max_tokens=max_tokens,
system=system_msg,
messages=messages,
stop_sequences=stop,
model=model,
temperature=temperature,
top_p=top_p,
)
contents = [response.content[0].text]
return contents
def reka_chat_request(
model: str = None,
engine: str = None,
temperature: float = 0,
max_tokens: int = 512,
top_p: float = 1.0,
prompt: str = None,
messages: List[dict] = None,
stop: List[str] = None,
**kwargs,
) -> List[str]:
"""
Request the evaluation prompt from the OpenAI API in chat format.
Args:
prompt (str): The encoded prompt.
messages (List[dict]): The messages.
model (str): The model to use.
engine (str): The engine to use.
temperature (float, optional): The temperature. Defaults to 0.7.
max_tokens (int, optional): The maximum number of tokens. Defaults to 800.
top_p (float, optional): The top p. Defaults to 0.95.
stop (List[str], optional): The stop. Defaults to None.
Returns:
List[str]: The list of generated evaluation prompts.
"""
assert (
prompt is not None or messages is not None
), "Either prompt or messages should be provided."
if messages is None:
messages = [{"role": "user", "content": prompt}]
api_key = os.getenv("REKA_API_KEY")
client = Reka(api_key=api_key)
response = client.chat.create(
messages=messages,
model=model,
max_tokens=max_tokens,
stop=stop,
temperature=temperature,
top_p=top_p,
)
contents = [response.responses[0].message.content]
return contents