forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.jl
489 lines (430 loc) · 21.8 KB
/
math.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# This file is a part of Julia. License is MIT: http://julialang.org/license
# frexp,ldexp,significand,exponent
for T in (Float16,Float32,Float64)
for z in (zero(T),-zero(T))
frexp(z) === (z,0)
significand(z) === z
@test_throws DomainError exponent(z)
end
for (a,b) in [(T(12.8),T(0.8)),
(prevfloat(realmin(T)), nextfloat(one(T),-2)),
(nextfloat(zero(T),3), T(0.75)),
(nextfloat(zero(T)), T(0.5))]
n = Int(log2(a/b))
@test frexp(a) == (b,n)
@test ldexp(b,n) == a
@test ldexp(a,-n) == b
@test significand(a) == 2b
@test exponent(a) == n-1
@test frexp(-a) == (-b,n)
@test ldexp(-b,n) == -a
@test ldexp(-a,-n) == -b
@test significand(-a) == -2b
@test exponent(-a) == n-1
end
end
for T in (Int, Float64, BigFloat)
@test_approx_eq deg2rad(T(180)) 1pi
@test_approx_eq deg2rad(T[45, 60]) [pi/T(4), pi/T(3)]
@test_approx_eq rad2deg([pi/T(4), pi/T(3)]) [45, 60]
@test_approx_eq rad2deg(T(1)*pi) 180
end
# degree-based trig functions
for T = (Float32,Float64,Rational{Int})
fT = typeof(float(one(T)))
for x = -400:40:400
@test_approx_eq_eps sind(convert(T,x))::fT convert(fT,sin(pi/180*x)) eps(deg2rad(convert(fT,x)))
@test_approx_eq_eps cosd(convert(T,x))::fT convert(fT,cos(pi/180*x)) eps(deg2rad(convert(fT,x)))
end
@test sind(convert(T,0.0))::fT === zero(fT)
@test sind(convert(T,180.0))::fT === zero(fT)
@test sind(convert(T,360.0))::fT === zero(fT)
T != Rational{Int} && @test sind(convert(T,-0.0))::fT === -zero(fT)
@test sind(convert(T,-180.0))::fT === -zero(fT)
@test sind(convert(T,-360.0))::fT === -zero(fT)
@test cosd(convert(T,90))::fT === zero(fT)
@test cosd(convert(T,270))::fT === zero(fT)
@test cosd(convert(T,-90))::fT === zero(fT)
@test cosd(convert(T,-270))::fT === zero(fT)
for x = -3:0.3:3
@test_approx_eq_eps sinpi(convert(T,x))::fT convert(fT,sin(pi*x)) eps(pi*convert(fT,x))
@test_approx_eq_eps cospi(convert(T,x))::fT convert(fT,cos(pi*x)) eps(pi*convert(fT,x))
end
@test sinpi(convert(T,0.0))::fT === zero(fT)
@test sinpi(convert(T,1.0))::fT === zero(fT)
@test sinpi(convert(T,2.0))::fT === zero(fT)
T != Rational{Int} && @test sinpi(convert(T,-0.0))::fT === -zero(fT)
@test sinpi(convert(T,-1.0))::fT === -zero(fT)
@test sinpi(convert(T,-2.0))::fT === -zero(fT)
@test cospi(convert(T,0.5))::fT === zero(fT)
@test cospi(convert(T,1.5))::fT === zero(fT)
@test cospi(convert(T,-0.5))::fT === zero(fT)
@test cospi(convert(T,-1.5))::fT === zero(fT)
# check exact values
@test sind(convert(T,30)) == 0.5
@test cosd(convert(T,60)) == 0.5
@test sind(convert(T,150)) == 0.5
@test sinpi(one(T)/convert(T,6)) == 0.5
T != Float32 && @test cospi(one(T)/convert(T,3)) == 0.5
T == Rational{Int} && @test sinpi(5//6) == 0.5
end
# check type stability
for T = (Float32,Float64,BigFloat)
for f = (sind,cosd,sinpi,cospi)
@test Base.return_types(f,Tuple{T}) == [T]
end
end
# error functions
@test_approx_eq erf(1) 0.84270079294971486934
@test_approx_eq erfc(1) 0.15729920705028513066
@test_approx_eq erfcx(1) 0.42758357615580700442
@test_approx_eq erfi(1) 1.6504257587975428760
@test_approx_eq erfinv(0.84270079294971486934) 1
@test_approx_eq erfcinv(0.15729920705028513066) 1
@test_approx_eq dawson(1) 0.53807950691276841914
@test_approx_eq erf(1+2im) -0.53664356577856503399-5.0491437034470346695im
@test_approx_eq erfc(1+2im) 1.5366435657785650340+5.0491437034470346695im
@test_approx_eq erfcx(1+2im) 0.14023958136627794370-0.22221344017989910261im
@test_approx_eq erfi(1+2im) -0.011259006028815025076+1.0036063427256517509im
@test_approx_eq dawson(1+2im) -13.388927316482919244-11.828715103889593303im
for x in logspace(-200, -0.01)
@test_approx_eq_eps erf(erfinv(x)) x 1e-12*x
@test_approx_eq_eps erf(erfinv(-x)) -x 1e-12*x
@test_approx_eq_eps erfc(erfcinv(2*x)) 2*x 1e-12*x
if x > 1e-20
xf = Float32(x)
@test_approx_eq_eps erf(erfinv(xf)) xf 1e-5*xf
@test_approx_eq_eps erf(erfinv(-xf)) -xf 1e-5*xf
@test_approx_eq_eps erfc(erfcinv(2xf)) 2xf 1e-5*xf
end
end
# airy
@test_approx_eq airy(1.8) 0.0470362168668458052247
@test_approx_eq airyprime(1.8) -0.0685247801186109345638
@test_approx_eq airybi(1.8) 2.595869356743906290060
@test_approx_eq airybiprime(1.8) 2.98554005084659907283
@test_throws Base.Math.AmosException airy(200im)
@test_throws Base.Math.AmosException airybi(200)
@test_throws ArgumentError airy(5,one(Complex128))
z = 1.8 + 1.0im
@test_approx_eq airyx(0, z) airy(0, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(1, z) airy(1, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(2, z) airy(2, z) * exp(-abs(real(2/3 * z * sqrt(z))))
@test_approx_eq airyx(3, z) airy(3, z) * exp(-abs(real(2/3 * z * sqrt(z))))
@test_throws ArgumentError airyx(5,z)
# bessely0, bessely1, besselj0, besselj1
@test_approx_eq besselj0(Float32(2.0)) besselj0(Float64(2.0))
@test_approx_eq besselj1(Float32(2.0)) besselj1(Float64(2.0))
@test_approx_eq bessely0(Float32(2.0)) bessely0(Float64(2.0))
@test_approx_eq bessely1(Float32(2.0)) bessely1(Float64(2.0))
@test_approx_eq besselj0(2) besselj0(2.0)
@test_approx_eq besselj1(2) besselj1(2.0)
@test_approx_eq bessely0(2) bessely0(2.0)
@test_approx_eq bessely1(2) bessely1(2.0)
@test_approx_eq besselj0(2.0 + im) besselj(0, 2.0 + im)
@test_approx_eq besselj1(2.0 + im) besselj(1, 2.0 + im)
@test_approx_eq bessely0(2.0 + im) bessely(0, 2.0 + im)
@test_approx_eq bessely1(2.0 + im) bessely(1, 2.0 + im)
# besselh
true_h133 = 0.30906272225525164362 - 0.53854161610503161800im
@test_approx_eq besselh(3,1,3) true_h133
@test_approx_eq besselh(-3,1,3) -true_h133
@test_approx_eq besselh(3,2,3) conj(true_h133)
@test_approx_eq besselh(-3,2,3) -conj(true_h133)
@test_throws Base.Math.AmosException besselh(1,0)
# besseli
true_i33 = 0.95975362949600785698
@test_approx_eq besseli(3,3) true_i33
@test_approx_eq besseli(-3,3) true_i33
@test_approx_eq besseli(3,-3) -true_i33
@test_approx_eq besseli(-3,-3) -true_i33
@test_throws Base.Math.AmosException besseli(1,1000)
@test_throws DomainError besseli(0.4,-1.0)
# besselj
@test besselj(0,0) == 1
for i = 1:5
@test besselj(i,0) == 0
@test besselj(-i,0) == 0
@test besselj(-i,Float32(0)) == 0
@test besselj(-i,Float32(0)) == 0
end
j33 = besselj(3,3.)
@test besselj(3,3) == j33
@test besselj(-3,-3) == j33
@test besselj(-3,3) == -j33
@test besselj(3,-3) == -j33
j43 = besselj(4,3.)
@test besselj(4,3) == j43
@test besselj(-4,-3) == j43
@test besselj(-4,3) == j43
@test besselj(4,-3) == j43
@test_approx_eq j33 0.30906272225525164362
@test_approx_eq j43 0.13203418392461221033
@test_throws DomainError besselj(0.1, -0.4)
@test_approx_eq besselj(0.1, complex(-0.4)) 0.820421842809028916 + 0.266571215948350899im
@test_approx_eq besselj(3.2, 1.3+0.6im) 0.01135309305831220201 + 0.03927719044393515275im
@test_approx_eq besselj(1, 3im) 3.953370217402609396im
@test_throws Base.Math.AmosException besselj(20,1000im)
# besselk
true_k33 = 0.12217037575718356792
@test_approx_eq besselk(3,3) true_k33
@test_approx_eq besselk(-3,3) true_k33
true_k3m3 = -0.1221703757571835679 - 3.0151549516807985776im
@test_throws DomainError besselk(3,-3)
@test_approx_eq besselk(3,complex(-3)) true_k3m3
@test_approx_eq besselk(-3,complex(-3)) true_k3m3
@test_throws Base.Math.AmosException besselk(200,0.01)
# issue #6564
@test besselk(1.0,0.0) == Inf
# bessely
y33 = bessely(3,3.)
@test bessely(3,3) == y33
@test bessely(3.,3.) == y33
@test_approx_eq bessely(3,Float32(3.)) y33
@test_approx_eq bessely(-3,3) -y33
@test_approx_eq y33 -0.53854161610503161800
@test_throws DomainError bessely(3,-3)
@test_approx_eq bessely(3,complex(-3)) 0.53854161610503161800 - 0.61812544451050328724im
@test_throws Base.Math.AmosException bessely(200.5,0.1)
@test_throws DomainError bessely(0.4,-1.0)
@test_throws DomainError bessely(0.4,Float32(-1.0))
# issue #6653
for f in (besselj,bessely,besseli,besselk,hankelh1,hankelh2)
@test_approx_eq f(0,1) f(0,Complex128(1))
@test_approx_eq f(0,1) f(0,Complex64(1))
end
# scaled bessel[ijky] and hankelh[12]
for x in (1.0, 0.0, -1.0), y in (1.0, 0.0, -1.0), nu in (1.0, 0.0, -1.0)
z = Complex128(x + y * im)
z == zero(z) || @test_approx_eq hankelh1x(nu, z) hankelh1(nu, z) * exp(-z * im)
z == zero(z) || @test_approx_eq hankelh2x(nu, z) hankelh2(nu, z) * exp(z * im)
(nu < 0 && z == zero(z)) || @test_approx_eq besselix(nu, z) besseli(nu, z) * exp(-abs(real(z)))
(nu < 0 && z == zero(z)) || @test_approx_eq besseljx(nu, z) besselj(nu, z) * exp(-abs(imag(z)))
z == zero(z) || @test_approx_eq besselkx(nu, z) besselk(nu, z) * exp(z)
z == zero(z) || @test_approx_eq besselyx(nu, z) bessely(nu, z) * exp(-abs(imag(z)))
end
@test_throws Base.Math.AmosException hankelh1x(1, 0)
@test_throws Base.Math.AmosException hankelh2x(1, 0)
@test_throws Base.Math.AmosException besselix(-1, 0)
@test_throws Base.Math.AmosException besseljx(-1, 0)
@test besselkx(1, 0) == Inf
@test_throws Base.Math.AmosException besselyx(1, 0)
@test_throws DomainError besselix(0.4,-1.0)
@test_throws DomainError besseljx(0.4, -1.0)
@test_throws DomainError besselkx(0.4,-1.0)
@test_throws DomainError besselyx(0.4,-1.0)
# beta, lbeta
@test_approx_eq beta(3/2,7/2) 5π/128
@test_approx_eq beta(3,5) 1/105
@test_approx_eq lbeta(5,4) log(beta(5,4))
@test_approx_eq beta(5,4) beta(4,5)
@test_approx_eq beta(-1/2, 3) -16/3
@test_approx_eq lbeta(-1/2, 3) log(16/3)
# gamma, lgamma (complex argument)
if Base.Math.libm == "libopenlibm"
@test gamma(Float64[1:25;]) == gamma(1:25)
else
@test_approx_eq gamma(Float64[1:25;]) gamma(1:25)
end
for elty in (Float32, Float64)
@test_approx_eq gamma(convert(elty,1/2)) convert(elty,sqrt(π))
@test_approx_eq gamma(convert(elty,-1/2)) convert(elty,-2sqrt(π))
@test_approx_eq lgamma(convert(elty,-1/2)) convert(elty,log(abs(gamma(-1/2))))
end
@test_approx_eq lgamma(1.4+3.7im) -3.7094025330996841898 + 2.4568090502768651184im
@test_approx_eq lgamma(1.4+3.7im) log(gamma(1.4+3.7im))
@test_approx_eq lgamma(-4.2+0im) lgamma(-4.2)-pi*im
@test factorial(3.0) == gamma(4.0) == factorial(3)
for x in (3.2, 2+1im, 3//2, 3.2+0.1im)
@test factorial(x) == gamma(1+x)
end
# digamma
for elty in (Float32, Float64)
@test_approx_eq digamma(convert(elty, 9)) convert(elty, 2.140641477955609996536345)
@test_approx_eq digamma(convert(elty, 2.5)) convert(elty, 0.7031566406452431872257)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041107679516822)
@test_approx_eq digamma(convert(elty, 7e-4)) convert(elty, -1429.147493371120205005198)
@test_approx_eq digamma(convert(elty, 7e-5)) convert(elty, -14286.29138623969227538398)
@test_approx_eq digamma(convert(elty, 7e-6)) convert(elty, -142857.7200612932791081972)
@test_approx_eq digamma(convert(elty, 2e-6)) convert(elty, -500000.5772123750382073831)
@test_approx_eq digamma(convert(elty, 1e-6)) convert(elty, -1000000.577214019968668068)
@test_approx_eq digamma(convert(elty, 7e-7)) convert(elty, -1428572.005785942019703646)
@test_approx_eq digamma(convert(elty, -0.5)) convert(elty, .03648997397857652055902367)
@test_approx_eq digamma(convert(elty, -1.1)) convert(elty, 10.15416395914385769902271)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041108)
@test_approx_eq digamma(convert(elty, 1/2)) convert(elty, -γ - log(4))
@test_approx_eq digamma(convert(elty, 1)) convert(elty, -γ)
@test_approx_eq digamma(convert(elty, 2)) convert(elty, 1 - γ)
@test_approx_eq digamma(convert(elty, 3)) convert(elty, 3/2 - γ)
@test_approx_eq digamma(convert(elty, 4)) convert(elty, 11/6 - γ)
@test_approx_eq digamma(convert(elty, 5)) convert(elty, 25/12 - γ)
@test_approx_eq digamma(convert(elty, 10)) convert(elty, 7129/2520 - γ)
end
# trigamma
for elty in (Float32, Float64)
@test_approx_eq trigamma(convert(elty, 0.1)) convert(elty, 101.433299150792758817)
@test_approx_eq trigamma(convert(elty, 1/2)) convert(elty, π^2/2)
@test_approx_eq trigamma(convert(elty, 1)) convert(elty, π^2/6)
@test_approx_eq trigamma(convert(elty, 2)) convert(elty, π^2/6 - 1)
@test_approx_eq trigamma(convert(elty, 3)) convert(elty, π^2/6 - 5/4)
@test_approx_eq trigamma(convert(elty, 4)) convert(elty, π^2/6 - 49/36)
@test_approx_eq trigamma(convert(elty, 5)) convert(elty, π^2/6 - 205/144)
@test_approx_eq trigamma(convert(elty, 10)) convert(elty, π^2/6 - 9778141/6350400)
end
# invdigamma
for elty in (Float32, Float64)
for val in [0.001, 0.01, 0.1, 1.0, 10.0]
@test abs(invdigamma(digamma(convert(elty, val))) - convert(elty, val)) < 1e-8
end
end
@test_approx_eq polygamma(20, 7.) -4.644616027240543262561198814998587152547
# eta, zeta
@test_approx_eq eta(1) log(2)
@test_approx_eq eta(2) pi^2/12
@test_approx_eq zeta(0) -0.5
@test_approx_eq zeta(2) pi^2/6
@test_approx_eq zeta(4) pi^4/90
@test_approx_eq zeta(one(Float32)) Float32(zeta(one(Float64)))
# quadgk
@test_approx_eq quadgk(cos, 0,0.7,1)[1] sin(1)
@test_approx_eq quadgk(x -> exp(im*x), 0,0.7,1)[1] (exp(1im)-1)/im
@test_approx_eq quadgk(x -> exp(im*x), 0,1im)[1] -1im*expm1(-1)
@test_approx_eq_eps quadgk(cos, 0,BigFloat(1),order=40)[1] sin(BigFloat(1)) 1000*eps(BigFloat)
@test_approx_eq quadgk(x -> exp(-x), 0,0.7,Inf)[1] 1.0
@test_approx_eq quadgk(x -> exp(x), -Inf,0)[1] 1.0
@test_approx_eq quadgk(x -> exp(-x^2), -Inf,Inf)[1] sqrt(pi)
@test_approx_eq quadgk(x -> [exp(-x), exp(-2x)], 0, Inf)[1] [1,0.5]
@test_approx_eq quadgk(cos, 0,0.7,1, norm=abs)[1] sin(1)
# Ensure subnormal flags functions don't segfault
@test any(ccall("jl_zero_subnormals", UInt8, (UInt8,), 1) .== [0x00 0x01])
@test any(ccall("jl_zero_subnormals", UInt8, (UInt8,), 0) .== [0x00 0x01])
# useful test functions for relative error
err(z, x) = abs(z - x) / abs(x)
errc(z, x) = max(err(real(z),real(x)), err(imag(z),imag(x)))
for x in -10.2:0.3456:50
@test 1e-12 > err(digamma(x+0im), digamma(x))
end
# digamma, trigamma, polygamma & zeta test cases (compared to Wolfram Alpha)
@test 1e-13 > err(digamma(7+0im), 1.872784335098467139393487909917597568957840664060076401194232)
@test 1e-13 > errc(digamma(7im), 1.94761433458434866917623737015561385331974500663251349960124 + 1.642224898223468048051567761191050945700191089100087841536im)
@test 1e-13 > errc(digamma(-3.2+0.1im), 4.65022505497781398615943030397508454861261537905047116427511+2.32676364843128349629415011622322040021960602904363963042380im)
@test 1e-13 > err(trigamma(8+0im), 0.133137014694031425134546685920401606452509991909746283540546)
@test 1e-13 > errc(trigamma(8im), -0.0078125000000000000029194973110119898029284994355721719150 - 0.12467345030312762782439017882063360876391046513966063947im)
@test 1e-13 > errc(trigamma(-3.2+0.1im), 15.2073506449733631753218003030676132587307964766963426965699+15.7081038855113567966903832015076316497656334265029416039199im)
@test 1e-13 > err(polygamma(2, 8.1+0im), -0.01723882695611191078960494454602091934457319791968308929600)
@test 1e-13 > errc(polygamma(30, 8.1+2im), -2722.8895150799704384107961215752996280795801958784600407589+6935.8508929338093162407666304759101854270641674671634631058im)
@test 1e-13 > errc(polygamma(3, 2.1+1im), 0.00083328137020421819513475400319288216246978855356531898998-0.27776110819632285785222411186352713789967528250214937861im)
@test 1e-11 > err(polygamma(3, -4.2 + 2im),-0.0037752884324358856340054736472407163991189965406070325067-0.018937868838708874282432870292420046797798431078848805822im)
@test 1e-13 > err(polygamma(13, 5.2 - 2im), 0.08087519202975913804697004241042171828113370070289754772448-0.2300264043021038366901951197725318713469156789541415899307im)
@test 1e-11 > err(polygamma(123, -47.2 + 0im), 5.7111648667225422758966364116222590509254011308116701029e291)
@test 1e-13 > errc(zeta(4.1+0.3im, -3.2+0.1im), -461.95403678374488506025596495576748255121001107881278765917+926.02552636148651929560277856510991293536052745360005500774im)
@test 1e-13 > errc(zeta(4.1+0.3im, 3.2+0.1im), 0.0121197525131633219465301571139288562254218365173899270675-0.00687228692565614267981577154948499247518236888933925740902im)
@test 1e-13 > errc(zeta(4.1, 3.2+0.1im),0.0137637451187986846516125754047084829556100290057521276517-0.00152194599531628234517456529686769063828217532350810111482im)
@test 1e-12 > errc(zeta(1.0001, -4.5e2+3.2im), 9993.89099199843392251301993718413132850540848778561412270571-3.13257480938495907945892330398176989805350557816701044268548im)
@test_throws DomainError zeta(3.1,-4.2)
@test 1e-13 > errc(zeta(3.1,-4.2+0im), -138.06320182025311080661516120845508778572835942189570145952+45.586579397698817209431034568162819207622092308850063038062im)
@test 1e-15 > errc(zeta(3.1+0im,-4.2), zeta(3.1,-4.2+0im))
@test 1e-13 > errc(zeta(3.1,4.2), 0.029938344862645948405021260567725078588893266227472565010234)
@test 1e-13 > err(zeta(27, 3.1), 5.413318813037879056337862215066960774064332961282599376e-14)
@test 1e-13 > err(zeta(27, 2), 7.4507117898354294919810041706041194547190318825658299932e-9)
@test 1e-12 > err(zeta(27, -105.3), -1.311372652244914148556295810515903234635727465138859603e14)
@test polygamma(4, -3.1+Inf*im) == polygamma(4, 3.1+Inf*im) == 0
@test polygamma(4, -0.0) == Inf == -polygamma(4, +0.0)
@test zeta(4, +0.0) == Inf == zeta(4, -0.0)
@test zeta(5, +0.0) == Inf == -zeta(5, -0.0)
@test isa([digamma(x) for x in [1.0]], Vector{Float64})
@test isa([trigamma(x) for x in [1.0]], Vector{Float64})
@test isa([polygamma(3,x) for x in [1.0]], Vector{Float64})
@test 1e-13 > errc(zeta(2 + 1im, -1.1), zeta(2 + 1im, -1.1+0im))
@test 1e-13 > errc(zeta(2 + 1im, -1.1), -1525.8095173321060982383023516086563741006869909580583246557 + 1719.4753293650912305811325486980742946107143330321249869576im)
@test_approx_eq polygamma(3,5) polygamma(3,5.)
@test @evalpoly(2,3,4,5,6) == 3+2*(4+2*(5+2*6)) == @evalpoly(2+0im,3,4,5,6)
@test let evalcounts=0
@evalpoly(begin
evalcounts += 1
4
end, 1,2,3,4,5)
evalcounts
end == 1
a0 = 1
a1 = 2
c = 3
@test @evalpoly(c, a0, a1) == 7
@test 1e-14 > err(eta(1+1e-9), 0.693147180719814213126976796937244130533478392539154928250926)
@test 1e-14 > err(eta(1+5e-3), 0.693945708117842473436705502427198307157819636785324430166786)
@test 1e-13 > err(eta(1+7.1e-3), 0.694280602623782381522315484518617968911346216413679911124758)
@test 1e-13 > err(eta(1+8.1e-3), 0.694439974969407464789106040237272613286958025383030083792151)
@test 1e-13 > err(eta(1 - 2.1e-3 + 2e-3 * im), 0.69281144248566007063525513903467244218447562492555491581+0.00032001240133205689782368277733081683574922990400416791019im)
@test 1e-13 > err(eta(1 + 5e-3 + 5e-3 * im), 0.69394652468453741050544512825906295778565788963009705146+0.00079771059614865948716292388790427833787298296229354721960im)
@test 1e-12 > errc(zeta(1e-3+1e-3im), -0.5009189365276307665899456585255302329444338284981610162-0.0009209468912269622649423786878087494828441941303691216750im)
@test 1e-13 > errc(zeta(1e-4 + 2e-4im), -0.5000918637469642920007659467492165281457662206388959645-0.0001838278317660822408234942825686513084009527096442173056im)
# Issue #7169: (TODO: better accuracy should be possible?)
@test 1e-9 > errc(zeta(0 + 99.69im), 4.67192766128949471267133846066040655597942700322077493021802+3.89448062985266025394674304029984849370377607524207984092848im)
@test 1e-12 > errc(zeta(3 + 99.69im), 1.09996958148566565003471336713642736202442134876588828500-0.00948220959478852115901654819402390826992494044787958181148im)
@test 1e-9 > errc(zeta(-3 + 99.69im), 10332.6267578711852982128675093428012860119184786399673520976+13212.8641740351391796168658602382583730208014957452167440726im)
@test 1e-13 > errc(zeta(2 + 99.69im, 1.3), 0.41617652544777996034143623540420694985469543821307918291931-0.74199610821536326325073784018327392143031681111201859489991im)
for z in (1.234, 1.234 + 5.678im, [1.234, 5.678])
@test_approx_eq cis(z) exp(im*z)
end
# modf
for elty in (Float32, Float64)
@test_approx_eq modf( convert(elty,1.2) )[1] convert(elty,0.2)
@test_approx_eq modf( convert(elty,1.2) )[2] convert(elty,1.0)
@test_approx_eq modf( convert(elty,1.0) )[1] convert(elty,0.0)
@test_approx_eq modf( convert(elty,1.0) )[2] convert(elty,1.0)
end
# frexp
for elty in (Float32, Float64)
@test frexp( convert(elty,0.5) ) == (convert(elty,0.5),0)
@test frexp( convert(elty,4.0) ) == (convert(elty,0.5),3)
@test_approx_eq frexp( convert(elty,10.5) )[1] convert(elty,0.65625)
@test frexp( convert(elty,10.5) )[2] == 4
@test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][1] convert(elty,0.5)
@test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][2] convert(elty,0.65625)
@test frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[2] == [ 3 4 ]
end
# log/log1p
# if using Tang's algorithm, should be accurate to within 0.56 ulps
X = rand(100)
for x in X
for n = -5:5
xn = ldexp(x,n)
for T in (Float32,Float64)
xt = T(x)
y = Base.Math.JuliaLibm.log(xt)
yb = log(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
y = Base.Math.JuliaLibm.log1p(xt)
yb = log1p(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
if n <= 0
y = Base.Math.JuliaLibm.log1p(-xt)
yb = log1p(big(-xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
end
end
end
end
for n = 0:28
@test log(2,2^n) == n
end
with_bigfloat_precision(10_000) do
@test log(2,big(2)^100) == 100
@test log(2,big(2)^200) == 200
@test log(2,big(2)^300) == 300
@test log(2,big(2)^400) == 400
end
# test vectorization of 2-arg vectorized functions
binary_math_functions = [
copysign, flipsign, log, atan2, hypot, max, min,
airy, airyx, besselh, hankelh1, hankelh2, hankelh1x, hankelh2x,
besseli, besselix, besselj, besseljx, besselk, besselkx, bessely, besselyx,
polygamma, zeta, beta, lbeta,
]
for f in binary_math_functions
x = y = 2
v = [f(x,y)]
@test f([x],y) == v
@test f(x,[y]) == v
@test f([x],[y]) == v
end