forked from matplotlib/AnatomyOfMatplotlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimshow_example.py
45 lines (35 loc) · 1.48 KB
/
imshow_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
from mpl_toolkits import axes_grid1
import example_utils
def main():
fig, axes = setup_axes()
plot(axes, *load_data())
example_utils.title(fig, '"ax.imshow(data, ...)": Colormapped or RGB arrays')
fig.savefig('imshow_example.png', facecolor='none')
plt.show()
def plot(axes, img_data, scalar_data, ny):
# Note: I'm defining the extent so I can cheat a bit when using ImageGrid
# to make all of the axes the same height...
# Default: Linear interpolation
axes[0].imshow(scalar_data, cmap='gist_earth', extent=[0, ny, ny, 0])
# Use nearest interpolation instead.
axes[1].imshow(scalar_data, cmap='gist_earth', interpolation='nearest',
extent=[0, ny, ny, 0])
# Show RGB/RGBA data instead of colormapping a scalar.
axes[2].imshow(img_data)
def load_data():
img_data = plt.imread(get_sample_data('grace_hopper.png'))
ny, nx, nbands = img_data.shape
scalar_data = np.load(get_sample_data('axes_grid/bivariate_normal.npy'))
return img_data, scalar_data, ny
def setup_axes():
# We'll set up the axes a bit differently here so that they'll all be the
# same height even though the aspect will be set and adjustable is "box".
fig = plt.figure(figsize=(6,3))
axes = axes_grid1.ImageGrid(fig, [0, 0, .93, 1], (1, 3), axes_pad=0)
for ax in axes:
ax.set(xticks=[], yticks=[])
return fig, axes
main()