Skip to content

WongKinYiu/CrossStagePartialNetworks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cross Stage Partial Networks

This is the implementation of "CSPNet: A New Backbone that can Enhance Learning Capability of CNN" using Darknet framwork.

For installing Darknet framework, you can refer to darknet(AlexeyAB).

Combining with CIoU, Scale Sensitivity, IoU Threshold, Greedy NMS, Mosaic Augmentation, ...

CSPResNeXt-50-PANet-SPP acheives impressive results on test-dev set of MSCOCO object detection task:

Model Size 1080ti fps AP AP50 AP75 APS APM APL cfg weight
CSPResNeXt50-PANet-SPP 512×512 44 42.4 64.4 45.9 23.2 45.5 55.3 cfg weight
CSPResNeXt50-PANet-SPP 608×608 35 43.2 65.4 47.0 25.7 46.7 53.3 cfg weight

ImageNet

Big Models

Model #Parameter BFLOPs Top-1 Top-5 cfg weight
DarkNet-53 [1] 41.57M 18.57 77.2 93.8 cfg weight
CSPDarkNet-53 27.61M (-34%) 13.07 (-30%) 77.2 (=) 93.6 (-0.2) cfg weight
CSPDarkNet-53-Elastic - 7.74 (-58%) 76.1 (-1.1) 93.3 (-0.5) cfg weight
ResNet-50 [2] 22.73M 9.74 75.8 92.9 cfg weight
CSPResNet-50 21.57M (-5%) 8.97 (-8%) 76.6 (+0.8) 93.3 (+0.4) cfg weight
CSPResNet-50-Elastic - 9.36 (-4%) 76.8 (+1.0) 93.5 (+0.6) cfg weight
ResNeXt-50 [3] 22.19M 10.11 77.8 94.2 cfg weight
CSPResNeXt-50 20.50M (-8%) 7.93 (-22%) 77.9 (+0.1) 94.0 (-0.2) cfg weight
CSPResNeXt-50-Elastic - 5.45 (-46%) 77.2 (-0.6) 93.8 (-0.4) cfg weight
CSPResNeXt-50+Elastic - 7.82 (-23%) 78.2 (+0.4) 94.2 (=) - -
HarDNet-138s [4] 35.5M 13.4 77.8 - - -
DenseNet-264-32 [5] 27.21M 11.03 77.8 93.9 - -
ResNet-152 [2] 60.2M 22.6 77.8 93.6 - -
DenseNet-201+Elastic [6] 19.48M 8.77 77.9 94.0 - -
CSPDenseNet-201+Elastic 20.17M (+4%) 7.13 (-19%) 77.9 (=) 94.0 (=) - -
Res2NetLite-72 [7] - 5.19 74.7 92.1 cfg weight

Small Models

Model #Parameter BFLOPs Top-1 Top-5 cfg weight
PeleeNet [8] 2.79M 1.017 70.7 90.0 - -
PeleeNet-swish 2.79M 1.017 71.5 90.7 - -
PeleeNet-swish-SE 2.81M 1.017 72.1 91.0 - -
CSPPeleeNet 2.83M (+1%) 0.888 (-13%) 70.9 (+0.2) 90.2 (+0.2) - -
CSPPeleeNet-swish 2.83M (+1%) 0.888 (-13%) 71.7 (+0.2) 90.8 (+0.1) - -
CSPPeleeNet-swish-SE 2.85M (+1%) 0.888 (-13%) 72.4 (+0.3) 91.0 (=) - -
SparsePeleeNet [9] 2.39M 0.904 69.6 89.3 - -
EfficientNet-B0* [10] 4.81M 0.915 71.3 90.4 cfg weight
EfficientNet-B0 (official) [10] - - 70.0 88.9 - -
MobileNet-v2 [11] 3.47M 0.858 67.0 87.7 cfg weight
CSPMobileNet-v2 2.51M (-28%) 0.764 (-11%) 67.7 (+0.7) 88.3 (+0.6) cfg weight
Darknet Ref. [12] 7.31M 0.96 61.1 83.0 cfg weight
CSPDenseNet Ref. 3.48M (-52%) 0.886 (-8%) 65.7 (+4.6) 86.6 (+3.6) - -
CSPPeleeNet Ref. 4.10M (-44%) 1.103 (+15%) 68.9 (+7.8) 88.7 (+5.7) - -
CSPDenseNetb Ref. 1.38M (-81%) 0.631 (-34%) 64.2 (+3.1) 85.5 (+2.5) - -
CSPPeleeNetb Ref. 2.01M (-73%) 0.897 (-7%) 67.8 (+6.7) 88.1 (+5.1) - -
ResNet-10 [2] 5.24M 2.273 63.5 85.0 cfg weight
CSPResNet-10 2.73M (-48%) 1.905 (-16%) 65.3 (+1.8) 86.5 (+1.5) - -
MixNet-M-GPU - 1.065 71.5 90.5 - -

※EfficientNet* is implemented by Darknet framework.

※EfficientNet(official) is trained by official code with batch size equals to 256.

※Swish activation function is presented by [13].

※Squeeze-and-excitation (SE) network is presented by [14].

※MixNet-M-GPU is modified from MixNet-M [21]

Some tricks for improving Acc

  1. Activation function
Model Activation Top-1 Top-5
PeleeNet LReLU 70.7 90.0
PeleeNet Swish 71.5 (+0.8) 90.7 (+0.7)
PeleeNet Mish 71.4 (+0.7) 90.4 (+0.4)
CSPPeleeNet LReLU 70.9 90.2
CSPPeleeNet Swish 71.7 (+0.8) 90.8 (+0.6)
CSPPeleeNet Mish 71.2 (+0.3) 90.3 (+0.1)
CSPResNeXt-50 LReLU 77.9 94.0
CSPResNeXt-50 Mish 78.9 (+1.0) 94.5 (+0.5)

※Swish activation function is not suitable for ResNeXt-based models, details are shown in Mish paper [22].

  1. Data augmentation
Model Augmentation Top-1 Top-5
CSPResNeXt-50 Normal 77.9 94.0
CSPResNeXt-50 Mixup 77.2 94.0
CSPResNeXt-50 Cutmix 78.0 94.3
CSPResNeXt-50 Cutmix+Mixup 77.7 94.4
CSPResNeXt-50 Mosaic 78.1 94.5
CSPResNeXt-50 Blur 77.5 93.8

※Mixup is presented by [23] and used by [24].

※CutMix is presented by [25].

Have to check the implementation of mixup and cutmix.

  1. Other
Model Method Top-1 Top-5
CSPResNeXt-50 Normal 77.9 94.0
CSPResNeXt-50 Smooth 78.1 94.4

※Smooth means label smoothing, which is presented by [26].

MS COCO

GPU Real-time Models

Model Size 1080ti fps AP AP50 AP75 cfg weight
CSPResNeXt50-PANet-SPP 512×512 44 38.0 60.0 40.8 cfg weight
CSPDarknet53-PANet-SPP 512×512 51 38.7 61.3 41.7 cfg weight
CSPResNet50-PANet-SPP 512×512 55 38.0 60.5 40.7 cfg weight

※PANet is presented by [15].

※SPP is presented by [16].

CPU Real-time Models

Model Size 9900K fps AP AP50 AP75 cfg weight
YOLOv3-tiny [1] 416×416 54 - 33.1 - cfg weight
YOLOv3-tiny-PRN [18] 416×416 71 - 33.1 - cfg weight
SNet49-ThunderNet* [19] 320×320 47 19.1 33.7 19.6 - -
Ours 320×320 102 15.3 34.2 12.0 - -
SNet146-ThunderNet* [19] 320×320 32 23.6 40.2 24.5 - -
Ours 320×320 52 19.4 40.0 17.0 - -
Pelee** [7] 304×304 7 22.4 38.3 22.9 - -
RefineDetLite** [20] 320×320 8 26.8 46.6 27.4 - -

※SNet49-ThunderNet* and SNet146-ThunderNet* are test on Xeon E5-2682v4.

※Pelee** and RefineDetLite** are test on i7-6700.

Some tricks for improving AP

  1. NMS threshold
Model Size Threshold AP AP50 AP75 APS APM APL
CSPResNeXt50-PANet-SPP 512×512 0.45 38.0 60.0 40.8 19.7 41.4 49.9
CSPResNeXt50-PANet-SPP 512×512 0.50 38.2 60.2 41.1 19.8 41.6 50.1
CSPResNeXt50-PANet-SPP 512×512 0.55 38.4 60.1 41.3 20.0 41.7 50.3
CSPResNeXt50-PANet-SPP 512×512 0.60 38.5 60.0 41.7 20.1 41.9 50.4
CSPResNeXt50-PANet-SPP 512×512 0.65 38.6 59.7 42.1 20.1 41.9 50.4
CSPResNeXt50-PANet-SPP 512×512 0.70 38.5 59.2 42.4 20.1 41.9 50.4
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.45 39.4 59.4 42.5 20.4 42.6 51.4
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.50 39.7 59.5 42.7 20.5 42.5 51.7
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.55 39.8 59.5 43.0 20.7 43.1 51.9
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.60 40.0 59.3 43.4 20.8 43.2 52.0
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.65 40.1 59.0 43.8 20.9 43.4 52.1
CSPResNeXt50-PANet-SPP-GIoU 512×512 0.70 40.1 58.6 44.2 20.9 43.4 52.1
CSPResNeXt50-PANet-SPP-GIoU 512×512 aware 40.0 59.5 43.4 20.8 43.2 52.0

※GIoU is presented by [17].

  1. Activation function
Model Size Activation AP AP50 AP75 APS APM APL
CSPPeleeNet-PRN 416×416 Leaky ReLU 23.1 44.5 22.0 6.6 24.4 35.3
CSPPeleeNet-PRN 416×416 Swish 24.1 45.8 23.3 6.8 26.1 35.5
  1. Loss function
Model Size Loss AP AP50 AP75 APS APM APL
CSPResNeXt50-PANet-SPP 512×512 MSE 38.0 60.0 40.8 19.7 41.4 49.9
CSPResNeXt50-PANet-SPP 512×512 GIoU 39.4 59.4 42.5 20.4 42.6 51.4
CSPResNeXt50-PANet-SPP 512×512 DIoU 39.1 58.8 42.1 20.1 42.4 50.7
CSPResNeXt50-PANet-SPP 512×512 CIoU 39.6 59.2 42.6 20.5 42.9 51.6

※DIoU and CIoU are presented by [27].

Reference

[1] YOLOv3: An Incremental Improvement

[2] Deep Residual Learning for Image Recognition (CVPR 2016)

[3] Aggregated Residual Transformations for Deep Neural Networks (CVPR 2017)

[4] HarDNet: A Low Memory Traffic Network (ICCV 2019)

[5] Densely Connected Convolutional Networks (CVPR 2017)

[6] ELASTIC: Improving CNNs with Dynamic Scaling Policies (CVPR 2019)

[7] RefineDetLite: A Lightweight One-stage Object Detection Framework for CPU-only Devices

[8] Pelee: A Real-Time Object Detection System on Mobile Devices (NeurIPS 2018)

[9] Sparsely Aggregated Convolutional Networks (ECCV 2018)

[10] EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (ICML 2019)

[11] MobileNetV2: Inverted Residuals and Linear Bottlenecks (CVPR 2018)

[12] https://pjreddie.com/darknet/tiny-darknet/

[13] Searching for Activation Functions

[14] Squeeze-and-Excitation Networks (CVPR 2018)

[15] Path Aggregation Network for Instance Segmentation (CVPR 2018)

[16] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (TPAMI 2015)

[17] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression (CVPR 2019)

[18] Enriching Variety of Layer-wise Learning Information by Gradient Combination (ICCVW 2019)

[19] ThunderNet: Towards Real-time Generic Object Detection (ICCV 2019)

[20] RefineDetLite: A Lightweight One-stage Object Detection Framework for CPU-only Devices

[21] MixConv: Mixed Depthwise Convolutional Kernels

[22] Mish: A Self Regularized Non-Monotonic Neural Activation Function

[23] mixup: Beyond Empirical Risk Minimization (ICLR 2018)

[24] Bag of Freebies for Training Object Detection Neural Networks

[25] CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (ICCV 2019)

[26] Rethinking the Inception Architecture for Computer Vision (CVPR 2016)

[27] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression (AAAI 2020)

Acknowledgements

https://github.com/AlexeyAB/darknet

https://github.com/ultralytics/yolov3

Releases

No releases published

Packages

No packages published

Languages