forked from ddbourgin/numpy-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_schedulers_plots.py
169 lines (154 loc) · 5.29 KB
/
nn_schedulers_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# flake8: noqa
import time
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# https://seaborn.pydata.org/generated/seaborn.set_context.html
# https://seaborn.pydata.org/generated/seaborn.set_style.html
sns.set_style("white")
sns.set_context("notebook", font_scale=0.7)
from numpy_ml.neural_nets.schedulers import (
ConstantScheduler,
ExponentialScheduler,
NoamScheduler,
KingScheduler,
)
def king_loss_fn(x):
if x <= 250:
return -0.25 * x + 82.50372665317208
elif 250 < x <= 600:
return 20.00372665317208
elif 600 < x <= 700:
return -0.2 * x + 140.00372665317207
else:
return 0.003726653172066108
def plot_schedulers():
fig, axes = plt.subplots(2, 2)
schedulers = [
(
[ConstantScheduler(lr=0.01), "lr=1e-2"],
[ConstantScheduler(lr=0.008), "lr=8e-3"],
[ConstantScheduler(lr=0.006), "lr=6e-3"],
[ConstantScheduler(lr=0.004), "lr=4e-3"],
[ConstantScheduler(lr=0.002), "lr=2e-3"],
),
(
[
ExponentialScheduler(
lr=0.01, stage_length=250, staircase=False, decay=0.4
),
"lr=0.01, stage=250, stair=False, decay=0.4",
],
[
ExponentialScheduler(
lr=0.01, stage_length=250, staircase=True, decay=0.4
),
"lr=0.01, stage=250, stair=True, decay=0.4",
],
[
ExponentialScheduler(
lr=0.01, stage_length=125, staircase=True, decay=0.1
),
"lr=0.01, stage=125, stair=True, decay=0.1",
],
[
ExponentialScheduler(
lr=0.001, stage_length=250, staircase=False, decay=0.1
),
"lr=0.001, stage=250, stair=False, decay=0.1",
],
[
ExponentialScheduler(
lr=0.001, stage_length=125, staircase=False, decay=0.8
),
"lr=0.001, stage=125, stair=False, decay=0.8",
],
[
ExponentialScheduler(
lr=0.01, stage_length=250, staircase=False, decay=0.01
),
"lr=0.01, stage=250, stair=False, decay=0.01",
],
),
(
[
NoamScheduler(model_dim=512, scale_factor=1, warmup_steps=250),
"dim=512, scale=1, warmup=250",
],
[
NoamScheduler(model_dim=256, scale_factor=1, warmup_steps=250),
"dim=256, scale=1, warmup=250",
],
[
NoamScheduler(model_dim=512, scale_factor=1, warmup_steps=500),
"dim=512, scale=1, warmup=500",
],
[
NoamScheduler(model_dim=256, scale_factor=1, warmup_steps=500),
"dim=512, scale=1, warmup=500",
],
[
NoamScheduler(model_dim=512, scale_factor=2, warmup_steps=500),
"dim=512, scale=2, warmup=500",
],
[
NoamScheduler(model_dim=512, scale_factor=0.5, warmup_steps=500),
"dim=512, scale=0.5, warmup=500",
],
),
(
# [
# KingScheduler(initial_lr=0.01, patience=100, decay=0.1),
# "lr=0.01, patience=100, decay=0.8",
# ],
# [
# KingScheduler(initial_lr=0.01, patience=300, decay=0.999),
# "lr=0.01, patience=300, decay=0.999",
# ],
[
KingScheduler(initial_lr=0.009, patience=150, decay=0.995),
"lr=0.009, patience=150, decay=0.9999",
],
[
KingScheduler(initial_lr=0.008, patience=100, decay=0.995),
"lr=0.008, patience=100, decay=0.995",
],
[
KingScheduler(initial_lr=0.007, patience=50, decay=0.995),
"lr=0.007, patience=50, decay=0.995",
],
[
KingScheduler(initial_lr=0.005, patience=25, decay=0.9),
"lr=0.005, patience=25, decay=0.99",
],
),
]
for ax, schs, title in zip(
axes.flatten(), schedulers, ["Constant", "Exponential", "Noam", "King"]
):
t0 = time.time()
print("Running {} scheduler".format(title))
X = np.arange(1, 1000)
loss = np.array([king_loss_fn(x) for x in X])
# scale loss to fit on same axis as lr
scale = 0.01 / loss[0]
loss *= scale
if title == "King":
ax.plot(X, loss, ls=":", label="Loss")
for sc, lg in schs:
Y = np.array([sc(x, ll) for x, ll in zip(X, loss)])
ax.plot(X, Y, label=lg, alpha=0.6)
ax.legend(fontsize=5)
ax.set_xlabel("Steps")
ax.set_ylabel("Learning rate")
ax.set_title("{} scheduler".format(title))
print(
"Finished plotting {} runs of {} in {:.2f}s".format(
len(schs), title, time.time() - t0
)
)
plt.tight_layout()
plt.savefig("plot.png", dpi=300)
plt.close("all")
if __name__ == "__main__":
plot_schedulers()