forked from ddbourgin/numpy-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl_utils.py
471 lines (405 loc) · 14.9 KB
/
rl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""Utilities for training and evaluating RL models on OpenAI gym environments"""
import warnings
from itertools import product
from collections import defaultdict
import numpy as np
from numpy_ml.utils.testing import DependencyWarning
from numpy_ml.rl_models.tiles.tiles3 import tiles, IHT
NO_PD = False
try:
import pandas as pd
except ModuleNotFoundError:
NO_PD = True
try:
import gym
except ModuleNotFoundError:
fstr = (
"Agents in `numpy_ml.rl_models` use the OpenAI gym for training. "
"To install the gym environments, run `pip install gym`. For more"
" information, see https://github.com/openai/gym."
)
warnings.warn(fstr, DependencyWarning)
class EnvModel(object):
"""
A simple tabular environment model that maintains the counts of each
reward-outcome pair given the state and action that preceded them. The
model can be queried with
>>> M = EnvModel()
>>> M[(state, action, reward, next_state)] += 1
>>> M[(state, action, reward, next_state)]
1
>>> M.state_action_pairs()
[(state, action)]
>>> M.outcome_probs(state, action)
[(next_state, 1)]
"""
def __init__(self):
super(EnvModel, self).__init__()
self._model = defaultdict(lambda: defaultdict(lambda: 0))
def __setitem__(self, key, value):
"""Set self[key] to value"""
s, a, r, s_ = key
self._model[(s, a)][(r, s_)] = value
def __getitem__(self, key):
"""Return the value associated with key"""
s, a, r, s_ = key
return self._model[(s, a)][(r, s_)]
def __contains__(self, key):
"""True if EnvModel contains `key`, else False"""
s, a, r, s_ = key
p1 = (s, a) in self.state_action_pairs()
p2 = (r, s_) in self.reward_outcome_pairs()
return p1 and p2
def state_action_pairs(self):
"""Return all (state, action) pairs in the environment model"""
return list(self._model.keys())
def reward_outcome_pairs(self, s, a):
"""
Return all (reward, next_state) pairs associated with taking action `a`
in state `s`.
"""
return list(self._model[(s, a)].keys())
def outcome_probs(self, s, a):
"""
Return the probability under the environment model of each outcome
state after taking action `a` in state `s`.
Parameters
----------
s : int as returned by ``self._obs2num``
The id for the state/observation.
a : int as returned by ``self._action2num``
The id for the action taken from state `s`.
Returns
-------
outcome_probs : list of (state, prob) tuples
A list of each possible outcome and its associated probability
under the model.
"""
items = list(self._model[(s, a)].items())
total_count = np.sum([c for (_, c) in items])
outcome_probs = [c / total_count for (_, c) in items]
outcomes = [p for (p, _) in items]
return list(zip(outcomes, outcome_probs))
def state_action_pairs_leading_to_outcome(self, outcome):
"""
Return all (state, action) pairs that have a nonzero probability of
producing `outcome` under the current model.
Parameters
----------
outcome : int
The outcome state.
Returns
-------
pairs : list of (state, action) tuples
A list of all (state, action) pairs with a nonzero probability of
producing `outcome` under the model.
"""
pairs = []
for sa in self.state_action_pairs():
outcomes = [o for (r, o) in self.reward_outcome_pairs(*sa)]
if outcome in outcomes:
pairs.append(sa)
return pairs
def tile_state_space(
env,
env_stats,
n_tilings,
obs_max=None,
obs_min=None,
state_action=False,
grid_size=(4, 4),
):
"""
Return a function to encode the continous observations generated by `env`
in terms of a collection of `n_tilings` overlapping tilings (each with
dimension `grid_size`) of the state space.
Arguments
---------
env : ``gym.wrappers.time_limit.TimeLimit`` instance
An openAI environment.
n_tilings : int
The number of overlapping tilings to use. Should be a power of 2. This
determines the dimension of the discretized tile-encoded state vector.
obs_max : float or np.ndarray
The value to treat as the max value of the observation space when
calculating the grid widths. If None, use
``env.observation_space.high``. Default is None.
obs_min : float or np.ndarray
The value to treat as the min value of the observation space when
calculating the grid widths. If None, use
``env.observation_space.low``. Default is None.
state_action : bool
Whether to use tile coding to encode state-action values (True) or just
state values (False). Default is False.
grid_size : list of length 2
A list of ints representing the coarseness of the tilings. E.g., a
`grid_size` of [4, 4] would mean each tiling consisted of a 4x4 tile
grid. Default is [4, 4].
Returns
-------
encode_obs_as_tile : function
A function which takes as input continous observation vector and
returns a set of the indices of the active tiles in the tile coded
observation space.
n_states : int
An integer reflecting the total number of unique states possible under
this tile coding regimen.
"""
obs_max = np.nan_to_num(env.observation_space.high) if obs_max is None else obs_max
obs_min = np.nan_to_num(env.observation_space.low) if obs_min is None else obs_min
if state_action:
if env_stats["tuple_action"]:
n = [space.n - 1.0 for space in env.action_spaces.spaces]
else:
n = [env.action_space.n]
obs_max = np.concatenate([obs_max, n])
obs_min = np.concatenate([obs_min, np.zeros_like(n)])
obs_range = obs_max - obs_min
scale = 1.0 / obs_range
# scale (state-)observation vector
scale_obs = lambda obs: obs * scale # noqa: E731
n_tiles = np.prod(grid_size) * n_tilings
n_states = np.prod([n_tiles - i for i in range(n_tilings)])
iht = IHT(16384)
def encode_obs_as_tile(obs):
obs = scale_obs(obs)
return tuple(tiles(iht, n_tilings, obs))
return encode_obs_as_tile, n_states
def get_gym_environs():
"""List all valid OpenAI ``gym`` environment ids"""
return [e.id for e in gym.envs.registry.all()]
def get_gym_stats():
"""Return a pandas DataFrame of the environment IDs."""
df = []
for e in gym.envs.registry.all():
print(e.id)
df.append(env_stats(gym.make(e.id)))
cols = [
"id",
"continuous_actions",
"continuous_observations",
"action_dim",
# "action_ids",
"deterministic",
"multidim_actions",
"multidim_observations",
"n_actions_per_dim",
"n_obs_per_dim",
"obs_dim",
# "obs_ids",
"seed",
"tuple_actions",
"tuple_observations",
]
return df if NO_PD else pd.DataFrame(df)[cols]
def is_tuple(env):
"""
Check if the action and observation spaces for `env` are instances of
``gym.spaces.Tuple`` or ``gym.spaces.Dict``.
Notes
-----
A tuple space is a tuple of *several* (possibly multidimensional)
action/observation spaces. For our purposes, a tuple space is necessarily
multidimensional.
Returns
-------
tuple_action : bool
Whether the `env`'s action space is an instance of ``gym.spaces.Tuple``
or ``gym.spaces.Dict``.
tuple_obs : bool
Whether the `env`'s observation space is an instance of
``gym.spaces.Tuple`` or ``gym.spaces.Dict``.
"""
tuple_space, dict_space = gym.spaces.Tuple, gym.spaces.dict.Dict
tuple_action = isinstance(env.action_space, (tuple_space, dict_space))
tuple_obs = isinstance(env.observation_space, (tuple_space, dict_space))
return tuple_action, tuple_obs
def is_multidimensional(env):
"""
Check if the action and observation spaces for `env` are multidimensional
or ``Tuple`` spaces.
Notes
-----
A multidimensional space is any space whose actions / observations have
more than one element in them. This includes ``Tuple`` spaces, but also
includes single action/observation spaces with several dimensions.
Parameters
----------
env : ``gym.wrappers`` or ``gym.envs`` instance
The environment to evaluate.
Returns
-------
md_action : bool
Whether the `env`'s action space is multidimensional.
md_obs : bool
Whether the `env`'s observation space is multidimensional.
tuple_action : bool
Whether the `env`'s action space is a ``Tuple`` instance.
tuple_obs : bool
Whether the `env`'s observation space is a ``Tuple`` instance.
"""
md_action, md_obs = True, True
tuple_action, tuple_obs = is_tuple(env)
if not tuple_action:
act = env.action_space.sample()
md_action = isinstance(act, (list, tuple, np.ndarray)) and len(act) > 1
if not tuple_obs:
OS = env.observation_space
obs = OS.low if "low" in dir(OS) else OS.sample() # sample causes problems
md_obs = isinstance(obs, (list, tuple, np.ndarray)) and len(obs) > 1
return md_action, md_obs, tuple_action, tuple_obs
def is_continuous(env, tuple_action, tuple_obs):
"""
Check if an `env`'s observation and action spaces are continuous.
Parameters
----------
env : ``gym.wrappers`` or ``gym.envs`` instance
The environment to evaluate.
tuple_action : bool
Whether the `env`'s action space is an instance of `gym.spaces.Tuple`
or `gym.spaces.Dict`.
tuple_obs : bool
Whether the `env`'s observation space is an instance of `gym.spaces.Tuple`
or `gym.spaces.Dict`.
Returns
-------
cont_action : bool
Whether the `env`'s action space is continuous.
cont_obs : bool
Whether the `env`'s observation space is continuous.
"""
Continuous = gym.spaces.box.Box
if tuple_obs:
spaces = env.observation_space.spaces
cont_obs = all(isinstance(s, Continuous) for s in spaces)
else:
cont_obs = isinstance(env.observation_space, Continuous)
if tuple_action:
spaces = env.action_space.spaces
cont_action = all(isinstance(s, Continuous) for s in spaces)
else:
cont_action = isinstance(env.action_space, Continuous)
return cont_action, cont_obs
def action_stats(env, md_action, cont_action):
"""
Get information on `env`'s action space.
Parameters
----------
md_action : bool
Whether the `env`'s action space is multidimensional.
cont_action : bool
Whether the `env`'s action space is continuous.
Returns
-------
n_actions_per_dim : list of length (action_dim,)
The number of possible actions for each dimension of the action space.
action_ids : list or None
A list of all valid actions within the space. If `cont_action` is
True, this value will be None.
action_dim : int or None
The number of dimensions in a single action.
"""
if cont_action:
action_dim = 1
action_ids = None
n_actions_per_dim = [np.inf]
if md_action:
action_dim = env.action_space.shape[0]
n_actions_per_dim = [np.inf for _ in range(action_dim)]
else:
if md_action:
n_actions_per_dim = [
space.n if hasattr(space, "n") else np.inf
for space in env.action_space.spaces
]
action_ids = (
None
if np.inf in n_actions_per_dim
else list(product(*[range(i) for i in n_actions_per_dim]))
)
action_dim = len(n_actions_per_dim)
else:
action_dim = 1
n_actions_per_dim = [env.action_space.n]
action_ids = list(range(n_actions_per_dim[0]))
return n_actions_per_dim, action_ids, action_dim
def obs_stats(env, md_obs, cont_obs):
"""
Get information on the observation space for `env`.
Parameters
----------
env : ``gym.wrappers`` or ``gym.envs`` instance
The environment to evaluate.
md_obs : bool
Whether the `env`'s action space is multidimensional.
cont_obs : bool
Whether the `env`'s observation space is multidimensional.
Returns
-------
n_obs_per_dim : list of length (obs_dim,)
The number of possible observation classes for each dimension of the
observation space.
obs_ids : list or None
A list of all valid observations within the space. If `cont_obs` is
True, this value will be None.
obs_dim : int or None
The number of dimensions in a single observation.
"""
if cont_obs:
obs_ids = None
obs_dim = env.observation_space.shape[0]
n_obs_per_dim = [np.inf for _ in range(obs_dim)]
else:
if md_obs:
n_obs_per_dim = [
space.n if hasattr(space, "n") else np.inf
for space in env.observation_space.spaces
]
obs_ids = (
None
if np.inf in n_obs_per_dim
else list(product(*[range(i) for i in n_obs_per_dim]))
)
obs_dim = len(n_obs_per_dim)
else:
obs_dim = 1
n_obs_per_dim = [env.observation_space.n]
obs_ids = list(range(n_obs_per_dim[0]))
return n_obs_per_dim, obs_ids, obs_dim
def env_stats(env):
"""
Compute statistics for the current environment.
Parameters
----------
env : ``gym.wrappers`` or ``gym.envs`` instance
The environment to evaluate.
Returns
-------
env_info : dict
A dictionary containing information about the action and observation
spaces of `env`.
"""
md_action, md_obs, tuple_action, tuple_obs = is_multidimensional(env)
cont_action, cont_obs = is_continuous(env, tuple_action, tuple_obs)
n_actions_per_dim, action_ids, action_dim = action_stats(
env, md_action, cont_action,
)
n_obs_per_dim, obs_ids, obs_dim = obs_stats(env, md_obs, cont_obs)
env_info = {
"id": env.spec.id,
"seed": env.spec.seed if "seed" in dir(env.spec) else None,
"deterministic": bool(~env.spec.nondeterministic),
"tuple_actions": tuple_action,
"tuple_observations": tuple_obs,
"multidim_actions": md_action,
"multidim_observations": md_obs,
"continuous_actions": cont_action,
"continuous_observations": cont_obs,
"n_actions_per_dim": n_actions_per_dim,
"action_dim": action_dim,
"n_obs_per_dim": n_obs_per_dim,
"obs_dim": obs_dim,
"action_ids": action_ids,
"obs_ids": obs_ids,
}
return env_info