-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathachieve.py
115 lines (97 loc) · 3.75 KB
/
achieve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
"""
@author: WZM
@time: 2021/1/3 17:32
@function: 总实现文件
"""
import global_models as gm
import test as testmodel
import os
import sys
import argparse
import torch
import torchvision
gm._init()
gm.set_value('Triple', 'Triple')
gm.set_value('VggNet', 'VggNet')
gm.set_value('GoogLeNet', 'GoogLeNet')
gm.set_value('InceptionV2', 'InceptionV2')
gm.set_value('InceptionV3', 'InceptionV3')
gm.set_value('InceptionV4', 'InceptionV4')
gm.set_value('ResNet34', 'ResNet34')
gm.set_value('DenseNet121', 'DenseNet121')
gm.set_value('WzmModel1', 'WzmModel1')
gm.set_value('WzmModel2', 'WzmModel2')
# print("PyTorch Version: ", torch.__version__)
# print("Torchvision Version: ", torchvision.__version__)
def return_args():
args_list = sys.argv
if len(args_list) <= 5:
print("参数少了")
return None
return args_list[1:]
def get_args():
parser = argparse.ArgumentParser(description="get args...")
parser.add_argument("-train_path", help="train image folder", type=str)
parser.add_argument("-valid_path", help="valid image folder", type=str)
parser.add_argument("-train_txt", help="train txt file", type=str, default="train.txt")
parser.add_argument("-valid_txt", help="valid txt file", type=str, default="valid.txt")
parser.add_argument("-dataloader", help="data_loader loader setting", type=str, default="zism_dataloader")
parser.add_argument("-model", help="model", type=str, default="ResNet34")
parser.add_argument("-pretrained", help="whether use pretrained model", type=str, default='False')
parser.add_argument("-use_spp", help="whether use spp", type=str, default='False')
parser.add_argument("-use_se", help="whether use se", type=str, default='False')
parser.add_argument("-cross_validation", help="whether use k cross validation", type=str, default='False')
parser.add_argument("-train_batchsize", help="train batchsize", type=int, default=2)
parser.add_argument("-valid_batchsize", help="valid batchsize", type=int, default=2)
parser.add_argument("-epoches", help="epoches", type=int, default=100)
return parser.parse_args()
if __name__ == '__main__':
# train_data_path = r'E:\MyProject\graduation_remote_sence\datasets\alllabel'
# valid_data_path = train_data_path
# train_data_txt = 'train.txt'
# valid_data_txt = 'valid.txt'
# index = 61
# if return_args():
# train_data_path, valid_data_path, train_data_txt, valid_data_txt, index = return_args()
# else:
# sys.exit()
args = get_args()
pretrained = args.pretrained
use_spp = args.use_spp
use_se = args.use_se
cross_validation = args.cross_validation
if pretrained == 'False':
pretrained = False
else:
pretrained = True
if use_spp == 'False':
use_spp = False
else:
use_spp = True
if use_se == 'False':
use_se = False
else:
use_se = True
# use_se = True if use_se == 'True' else False
cross_validation = True if cross_validation == 'True' else False
if cross_validation:
from model_train.train_cross_validation import train
else:
from model_train.train import train
best_model = train(
train_data_path=args.train_path,
train_data_txt=args.train_txt,
valid_data_path=args.valid_path,
valid_data_txt=args.valid_txt,
dataloader=args.dataloader,
index=args.model,
pretrained=pretrained,
use_spp=use_spp,
use_se=use_se,
train_batch_size=args.train_batchsize,
valid_batch_size=args.valid_batchsize,
epoches=args.epoches,
)
# best_modelName = method.train(index, tain_name, vali_name) # 模型训练
# testmodel.test(index, best_modelName, vali_name) # 使用验证集测试模型