forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedma.c
2547 lines (2168 loc) · 65.7 KB
/
edma.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* TI EDMA DMA engine driver
*
* Copyright 2012 Texas Instruments
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/edma.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/edma.h>
#include "dmaengine.h"
#include "virt-dma.h"
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT 0x00
#define PARM_SRC 0x04
#define PARM_A_B_CNT 0x08
#define PARM_DST 0x0c
#define PARM_SRC_DST_BIDX 0x10
#define PARM_LINK_BCNTRLD 0x14
#define PARM_SRC_DST_CIDX 0x18
#define PARM_CCNT 0x1c
#define PARM_SIZE 0x20
/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER 0x00 /* 64 bits */
#define SH_ECR 0x08 /* 64 bits */
#define SH_ESR 0x10 /* 64 bits */
#define SH_CER 0x18 /* 64 bits */
#define SH_EER 0x20 /* 64 bits */
#define SH_EECR 0x28 /* 64 bits */
#define SH_EESR 0x30 /* 64 bits */
#define SH_SER 0x38 /* 64 bits */
#define SH_SECR 0x40 /* 64 bits */
#define SH_IER 0x50 /* 64 bits */
#define SH_IECR 0x58 /* 64 bits */
#define SH_IESR 0x60 /* 64 bits */
#define SH_IPR 0x68 /* 64 bits */
#define SH_ICR 0x70 /* 64 bits */
#define SH_IEVAL 0x78
#define SH_QER 0x80
#define SH_QEER 0x84
#define SH_QEECR 0x88
#define SH_QEESR 0x8c
#define SH_QSER 0x90
#define SH_QSECR 0x94
#define SH_SIZE 0x200
/* Offsets for EDMA CC global registers */
#define EDMA_REV 0x0000
#define EDMA_CCCFG 0x0004
#define EDMA_QCHMAP 0x0200 /* 8 registers */
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM 0x0260
#define EDMA_QUETCMAP 0x0280
#define EDMA_QUEPRI 0x0284
#define EDMA_EMR 0x0300 /* 64 bits */
#define EDMA_EMCR 0x0308 /* 64 bits */
#define EDMA_QEMR 0x0310
#define EDMA_QEMCR 0x0314
#define EDMA_CCERR 0x0318
#define EDMA_CCERRCLR 0x031c
#define EDMA_EEVAL 0x0320
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
#define EDMA_QRAE 0x0380 /* 4 registers */
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
#define EDMA_QSTAT 0x0600 /* 2 registers */
#define EDMA_QWMTHRA 0x0620
#define EDMA_QWMTHRB 0x0624
#define EDMA_CCSTAT 0x0640
#define EDMA_M 0x1000 /* global channel registers */
#define EDMA_ECR 0x1008
#define EDMA_ECRH 0x100C
#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
#define EDMA_PARM 0x4000 /* PaRAM entries */
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
#define EDMA_DCHMAP 0x0100 /* 64 registers */
/* CCCFG register */
#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
#define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST BIT(24)
/* CCSTAT register */
#define EDMA_CCSTAT_ACTV BIT(4)
/*
* Max of 20 segments per channel to conserve PaRAM slots
* Also note that MAX_NR_SG should be atleast the no.of periods
* that are required for ASoC, otherwise DMA prep calls will
* fail. Today davinci-pcm is the only user of this driver and
* requires atleast 17 slots, so we setup the default to 20.
*/
#define MAX_NR_SG 20
#define EDMA_MAX_SLOTS MAX_NR_SG
#define EDMA_DESCRIPTORS 16
#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
/* PaRAM slots are laid out like this */
struct edmacc_param {
u32 opt;
u32 src;
u32 a_b_cnt;
u32 dst;
u32 src_dst_bidx;
u32 link_bcntrld;
u32 src_dst_cidx;
u32 ccnt;
} __packed;
/* fields in edmacc_param.opt */
#define SAM BIT(0)
#define DAM BIT(1)
#define SYNCDIM BIT(2)
#define STATIC BIT(3)
#define EDMA_FWID (0x07 << 8)
#define TCCMODE BIT(11)
#define EDMA_TCC(t) ((t) << 12)
#define TCINTEN BIT(20)
#define ITCINTEN BIT(21)
#define TCCHEN BIT(22)
#define ITCCHEN BIT(23)
struct edma_pset {
u32 len;
dma_addr_t addr;
struct edmacc_param param;
};
struct edma_desc {
struct virt_dma_desc vdesc;
struct list_head node;
enum dma_transfer_direction direction;
int cyclic;
int absync;
int pset_nr;
struct edma_chan *echan;
int processed;
/*
* The following 4 elements are used for residue accounting.
*
* - processed_stat: the number of SG elements we have traversed
* so far to cover accounting. This is updated directly to processed
* during edma_callback and is always <= processed, because processed
* refers to the number of pending transfer (programmed to EDMA
* controller), where as processed_stat tracks number of transfers
* accounted for so far.
*
* - residue: The amount of bytes we have left to transfer for this desc
*
* - residue_stat: The residue in bytes of data we have covered
* so far for accounting. This is updated directly to residue
* during callbacks to keep it current.
*
* - sg_len: Tracks the length of the current intermediate transfer,
* this is required to update the residue during intermediate transfer
* completion callback.
*/
int processed_stat;
u32 sg_len;
u32 residue;
u32 residue_stat;
struct edma_pset pset[0];
};
struct edma_cc;
struct edma_tc {
struct device_node *node;
u16 id;
};
struct edma_chan {
struct virt_dma_chan vchan;
struct list_head node;
struct edma_desc *edesc;
struct edma_cc *ecc;
struct edma_tc *tc;
int ch_num;
bool alloced;
bool hw_triggered;
int slot[EDMA_MAX_SLOTS];
int missed;
struct dma_slave_config cfg;
};
struct edma_cc {
struct device *dev;
struct edma_soc_info *info;
void __iomem *base;
int id;
bool legacy_mode;
/* eDMA3 resource information */
unsigned num_channels;
unsigned num_qchannels;
unsigned num_region;
unsigned num_slots;
unsigned num_tc;
bool chmap_exist;
enum dma_event_q default_queue;
unsigned int ccint;
unsigned int ccerrint;
/*
* The slot_inuse bit for each PaRAM slot is clear unless the slot is
* in use by Linux or if it is allocated to be used by DSP.
*/
unsigned long *slot_inuse;
struct dma_device dma_slave;
struct dma_device *dma_memcpy;
struct edma_chan *slave_chans;
struct edma_tc *tc_list;
int dummy_slot;
};
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
.link_bcntrld = 0xffff,
.ccnt = 1,
};
#define EDMA_BINDING_LEGACY 0
#define EDMA_BINDING_TPCC 1
static const u32 edma_binding_type[] = {
[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
};
static const struct of_device_id edma_of_ids[] = {
{
.compatible = "ti,edma3",
.data = &edma_binding_type[EDMA_BINDING_LEGACY],
},
{
.compatible = "ti,edma3-tpcc",
.data = &edma_binding_type[EDMA_BINDING_TPCC],
},
{}
};
MODULE_DEVICE_TABLE(of, edma_of_ids);
static const struct of_device_id edma_tptc_of_ids[] = {
{ .compatible = "ti,edma3-tptc", },
{}
};
MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
return (unsigned int)__raw_readl(ecc->base + offset);
}
static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
__raw_writel(val, ecc->base + offset);
}
static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
unsigned or)
{
unsigned val = edma_read(ecc, offset);
val &= and;
val |= or;
edma_write(ecc, offset, val);
}
static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
unsigned val = edma_read(ecc, offset);
val &= and;
edma_write(ecc, offset, val);
}
static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
unsigned val = edma_read(ecc, offset);
val |= or;
edma_write(ecc, offset, val);
}
static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
int i)
{
return edma_read(ecc, offset + (i << 2));
}
static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
unsigned val)
{
edma_write(ecc, offset + (i << 2), val);
}
static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
unsigned and, unsigned or)
{
edma_modify(ecc, offset + (i << 2), and, or);
}
static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
unsigned or)
{
edma_or(ecc, offset + (i << 2), or);
}
static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
unsigned or)
{
edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}
static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
int j, unsigned val)
{
edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}
static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
return edma_read(ecc, EDMA_SHADOW0 + offset);
}
static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
int offset, int i)
{
return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}
static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
unsigned val)
{
edma_write(ecc, EDMA_SHADOW0 + offset, val);
}
static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
int i, unsigned val)
{
edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
int param_no)
{
return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}
static inline void edma_param_write(struct edma_cc *ecc, int offset,
int param_no, unsigned val)
{
edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
int param_no, unsigned and, unsigned or)
{
edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
unsigned and)
{
edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
unsigned or)
{
edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}
static inline void edma_set_bits(int offset, int len, unsigned long *p)
{
for (; len > 0; len--)
set_bit(offset + (len - 1), p);
}
static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
int priority)
{
int bit = queue_no * 4;
edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}
static void edma_set_chmap(struct edma_chan *echan, int slot)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
if (ecc->chmap_exist) {
slot = EDMA_CHAN_SLOT(slot);
edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
}
}
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
if (enable) {
edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
BIT(channel & 0x1f));
edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
BIT(channel & 0x1f));
} else {
edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
BIT(channel & 0x1f));
}
}
/*
* paRAM slot management functions
*/
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
const struct edmacc_param *param)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot >= ecc->num_slots)
return;
memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}
static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
struct edmacc_param *param)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot >= ecc->num_slots)
return -EINVAL;
memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
return 0;
}
/**
* edma_alloc_slot - allocate DMA parameter RAM
* @ecc: pointer to edma_cc struct
* @slot: specific slot to allocate; negative for "any unused slot"
*
* This allocates a parameter RAM slot, initializing it to hold a
* dummy transfer. Slots allocated using this routine have not been
* mapped to a hardware DMA channel, and will normally be used by
* linking to them from a slot associated with a DMA channel.
*
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
* slots may be allocated on behalf of DSP firmware.
*
* Returns the number of the slot, else negative errno.
*/
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
if (slot >= 0) {
slot = EDMA_CHAN_SLOT(slot);
/* Requesting entry paRAM slot for a HW triggered channel. */
if (ecc->chmap_exist && slot < ecc->num_channels)
slot = EDMA_SLOT_ANY;
}
if (slot < 0) {
if (ecc->chmap_exist)
slot = 0;
else
slot = ecc->num_channels;
for (;;) {
slot = find_next_zero_bit(ecc->slot_inuse,
ecc->num_slots,
slot);
if (slot == ecc->num_slots)
return -ENOMEM;
if (!test_and_set_bit(slot, ecc->slot_inuse))
break;
}
} else if (slot >= ecc->num_slots) {
return -EINVAL;
} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
return -EBUSY;
}
edma_write_slot(ecc, slot, &dummy_paramset);
return EDMA_CTLR_CHAN(ecc->id, slot);
}
static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
slot = EDMA_CHAN_SLOT(slot);
if (slot >= ecc->num_slots)
return;
edma_write_slot(ecc, slot, &dummy_paramset);
clear_bit(slot, ecc->slot_inuse);
}
/**
* edma_link - link one parameter RAM slot to another
* @ecc: pointer to edma_cc struct
* @from: parameter RAM slot originating the link
* @to: parameter RAM slot which is the link target
*
* The originating slot should not be part of any active DMA transfer.
*/
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
from = EDMA_CHAN_SLOT(from);
to = EDMA_CHAN_SLOT(to);
if (from >= ecc->num_slots || to >= ecc->num_slots)
return;
edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
PARM_OFFSET(to));
}
/**
* edma_get_position - returns the current transfer point
* @ecc: pointer to edma_cc struct
* @slot: parameter RAM slot being examined
* @dst: true selects the dest position, false the source
*
* Returns the position of the current active slot
*/
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
bool dst)
{
u32 offs;
slot = EDMA_CHAN_SLOT(slot);
offs = PARM_OFFSET(slot);
offs += dst ? PARM_DST : PARM_SRC;
return edma_read(ecc, offs);
}
/*
* Channels with event associations will be triggered by their hardware
* events, and channels without such associations will be triggered by
* software. (At this writing there is no interface for using software
* triggers except with channels that don't support hardware triggers.)
*/
static void edma_start(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
if (!echan->hw_triggered) {
/* EDMA channels without event association */
dev_dbg(ecc->dev, "ESR%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_ESR, j));
edma_shadow0_write_array(ecc, SH_ESR, j, mask);
} else {
/* EDMA channel with event association */
dev_dbg(ecc->dev, "ER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_ER, j));
/* Clear any pending event or error */
edma_write_array(ecc, EDMA_ECR, j, mask);
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_shadow0_write_array(ecc, SH_EESR, j, mask);
dev_dbg(ecc->dev, "EER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_EER, j));
}
}
static void edma_stop(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_EECR, j, mask);
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* clear possibly pending completion interrupt */
edma_shadow0_write_array(ecc, SH_ICR, j, mask);
dev_dbg(ecc->dev, "EER%d %08x\n", j,
edma_shadow0_read_array(ecc, SH_EER, j));
/* REVISIT: consider guarding against inappropriate event
* chaining by overwriting with dummy_paramset.
*/
}
/*
* Temporarily disable EDMA hardware events on the specified channel,
* preventing them from triggering new transfers
*/
static void edma_pause(struct edma_chan *echan)
{
int channel = EDMA_CHAN_SLOT(echan->ch_num);
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
}
/* Re-enable EDMA hardware events on the specified channel. */
static void edma_resume(struct edma_chan *echan)
{
int channel = EDMA_CHAN_SLOT(echan->ch_num);
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
}
static void edma_trigger_channel(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
unsigned int mask = BIT(channel & 0x1f);
edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
}
static void edma_clean_channel(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
int j = (channel >> 5);
unsigned int mask = BIT(channel & 0x1f);
dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
/* Clear the corresponding EMR bits */
edma_write_array(ecc, EDMA_EMCR, j, mask);
/* Clear any SER */
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
}
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
enum dma_event_q eventq_no)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
int bit = (channel & 0x7) * 4;
/* default to low priority queue */
if (eventq_no == EVENTQ_DEFAULT)
eventq_no = ecc->default_queue;
if (eventq_no >= ecc->num_tc)
return;
eventq_no &= 7;
edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
eventq_no << bit);
}
static int edma_alloc_channel(struct edma_chan *echan,
enum dma_event_q eventq_no)
{
struct edma_cc *ecc = echan->ecc;
int channel = EDMA_CHAN_SLOT(echan->ch_num);
/* ensure access through shadow region 0 */
edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
/* ensure no events are pending */
edma_stop(echan);
edma_setup_interrupt(echan, true);
edma_assign_channel_eventq(echan, eventq_no);
return 0;
}
static void edma_free_channel(struct edma_chan *echan)
{
/* ensure no events are pending */
edma_stop(echan);
/* REVISIT should probably take out of shadow region 0 */
edma_setup_interrupt(echan, false);
}
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
return container_of(d, struct edma_cc, dma_slave);
}
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
return container_of(c, struct edma_chan, vchan.chan);
}
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
{
return container_of(tx, struct edma_desc, vdesc.tx);
}
static void edma_desc_free(struct virt_dma_desc *vdesc)
{
kfree(container_of(vdesc, struct edma_desc, vdesc));
}
/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
struct edma_cc *ecc = echan->ecc;
struct virt_dma_desc *vdesc;
struct edma_desc *edesc;
struct device *dev = echan->vchan.chan.device->dev;
int i, j, left, nslots;
if (!echan->edesc) {
/* Setup is needed for the first transfer */
vdesc = vchan_next_desc(&echan->vchan);
if (!vdesc)
return;
list_del(&vdesc->node);
echan->edesc = to_edma_desc(&vdesc->tx);
}
edesc = echan->edesc;
/* Find out how many left */
left = edesc->pset_nr - edesc->processed;
nslots = min(MAX_NR_SG, left);
edesc->sg_len = 0;
/* Write descriptor PaRAM set(s) */
for (i = 0; i < nslots; i++) {
j = i + edesc->processed;
edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
edesc->sg_len += edesc->pset[j].len;
dev_vdbg(dev,
"\n pset[%d]:\n"
" chnum\t%d\n"
" slot\t%d\n"
" opt\t%08x\n"
" src\t%08x\n"
" dst\t%08x\n"
" abcnt\t%08x\n"
" ccnt\t%08x\n"
" bidx\t%08x\n"
" cidx\t%08x\n"
" lkrld\t%08x\n",
j, echan->ch_num, echan->slot[i],
edesc->pset[j].param.opt,
edesc->pset[j].param.src,
edesc->pset[j].param.dst,
edesc->pset[j].param.a_b_cnt,
edesc->pset[j].param.ccnt,
edesc->pset[j].param.src_dst_bidx,
edesc->pset[j].param.src_dst_cidx,
edesc->pset[j].param.link_bcntrld);
/* Link to the previous slot if not the last set */
if (i != (nslots - 1))
edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
}
edesc->processed += nslots;
/*
* If this is either the last set in a set of SG-list transactions
* then setup a link to the dummy slot, this results in all future
* events being absorbed and that's OK because we're done
*/
if (edesc->processed == edesc->pset_nr) {
if (edesc->cyclic)
edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
else
edma_link(ecc, echan->slot[nslots - 1],
echan->ecc->dummy_slot);
}
if (echan->missed) {
/*
* This happens due to setup times between intermediate
* transfers in long SG lists which have to be broken up into
* transfers of MAX_NR_SG
*/
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
edma_clean_channel(echan);
edma_stop(echan);
edma_start(echan);
edma_trigger_channel(echan);
echan->missed = 0;
} else if (edesc->processed <= MAX_NR_SG) {
dev_dbg(dev, "first transfer starting on channel %d\n",
echan->ch_num);
edma_start(echan);
} else {
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
echan->ch_num, edesc->processed);
edma_resume(echan);
}
}
static int edma_terminate_all(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&echan->vchan.lock, flags);
/*
* Stop DMA activity: we assume the callback will not be called
* after edma_dma() returns (even if it does, it will see
* echan->edesc is NULL and exit.)
*/
if (echan->edesc) {
edma_stop(echan);
/* Move the cyclic channel back to default queue */
if (!echan->tc && echan->edesc->cyclic)
edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
/*
* free the running request descriptor
* since it is not in any of the vdesc lists
*/
edma_desc_free(&echan->edesc->vdesc);
echan->edesc = NULL;
}
vchan_get_all_descriptors(&echan->vchan, &head);
spin_unlock_irqrestore(&echan->vchan.lock, flags);
vchan_dma_desc_free_list(&echan->vchan, &head);
return 0;
}
static void edma_synchronize(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
vchan_synchronize(&echan->vchan);
}
static int edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct edma_chan *echan = to_edma_chan(chan);
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
return 0;
}
static int edma_dma_pause(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
if (!echan->edesc)
return -EINVAL;
edma_pause(echan);
return 0;
}
static int edma_dma_resume(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
edma_resume(echan);
return 0;
}
/*
* A PaRAM set configuration abstraction used by other modes
* @chan: Channel who's PaRAM set we're configuring
* @pset: PaRAM set to initialize and setup.
* @src_addr: Source address of the DMA
* @dst_addr: Destination address of the DMA
* @burst: In units of dev_width, how much to send
* @dev_width: How much is the dev_width
* @dma_length: Total length of the DMA transfer
* @direction: Direction of the transfer
*/
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
unsigned int acnt, unsigned int dma_length,
enum dma_transfer_direction direction)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edmacc_param *param = &epset->param;
int bcnt, ccnt, cidx;
int src_bidx, dst_bidx, src_cidx, dst_cidx;
int absync;
/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
if (!burst)
burst = 1;
/*
* If the maxburst is equal to the fifo width, use
* A-synced transfers. This allows for large contiguous
* buffer transfers using only one PaRAM set.
*/
if (burst == 1) {
/*
* For the A-sync case, bcnt and ccnt are the remainder
* and quotient respectively of the division of:
* (dma_length / acnt) by (SZ_64K -1). This is so
* that in case bcnt over flows, we have ccnt to use.
* Note: In A-sync tranfer only, bcntrld is used, but it
* only applies for sg_dma_len(sg) >= SZ_64K.
* In this case, the best way adopted is- bccnt for the
* first frame will be the remainder below. Then for
* every successive frame, bcnt will be SZ_64K-1. This
* is assured as bcntrld = 0xffff in end of function.
*/
absync = false;
ccnt = dma_length / acnt / (SZ_64K - 1);
bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
/*
* If bcnt is non-zero, we have a remainder and hence an
* extra frame to transfer, so increment ccnt.
*/
if (bcnt)
ccnt++;
else
bcnt = SZ_64K - 1;
cidx = acnt;
} else {
/*
* If maxburst is greater than the fifo address_width,
* use AB-synced transfers where A count is the fifo
* address_width and B count is the maxburst. In this
* case, we are limited to transfers of C count frames
* of (address_width * maxburst) where C count is limited
* to SZ_64K-1. This places an upper bound on the length
* of an SG segment that can be handled.
*/
absync = true;
bcnt = burst;
ccnt = dma_length / (acnt * bcnt);
if (ccnt > (SZ_64K - 1)) {
dev_err(dev, "Exceeded max SG segment size\n");
return -EINVAL;
}
cidx = acnt * bcnt;
}
epset->len = dma_length;
if (direction == DMA_MEM_TO_DEV) {
src_bidx = acnt;
src_cidx = cidx;
dst_bidx = 0;
dst_cidx = 0;