forked from dragen1860/TensorFlow-2.x-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_head_attention.py
217 lines (203 loc) · 8.52 KB
/
multi_head_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from tensorflow import keras
import tensorflow.keras.backend as K
from keras_self_attention import ScaledDotProductAttention
class MultiHeadAttention(keras.layers.Layer):
"""Multi-head attention layer.
See: https://arxiv.org/pdf/1706.03762.pdf
"""
def __init__(self,
head_num,
activation='relu',
use_bias=True,
kernel_initializer='glorot_normal',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
history_only=False,
**kwargs):
"""Initialize the layer.
:param head_num: Number of heads.
:param activation: Activations for linear mappings.
:param use_bias: Whether to use bias term.
:param kernel_initializer: Initializer for linear mappings.
:param bias_initializer: Initializer for linear mappings.
:param kernel_regularizer: Regularizer for linear mappings.
:param bias_regularizer: Regularizer for linear mappings.
:param kernel_constraint: Constraints for linear mappings.
:param bias_constraint: Constraints for linear mappings.
:param history_only: Whether to only use history in attention layer.
"""
self.supports_masking = True
self.head_num = head_num
self.activation = keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = keras.initializers.get(kernel_initializer)
self.bias_initializer = keras.initializers.get(bias_initializer)
self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = keras.regularizers.get(bias_regularizer)
self.kernel_constraint = keras.constraints.get(kernel_constraint)
self.bias_constraint = keras.constraints.get(bias_constraint)
self.history_only = history_only
self.Wq, self.Wk, self.Wv, self.Wo = None, None, None, None
self.bq, self.bk, self.bv, self.bo = None, None, None, None
super(MultiHeadAttention, self).__init__(**kwargs)
def get_config(self):
config = {
'head_num': self.head_num,
'activation': keras.activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': keras.initializers.serialize(self.kernel_initializer),
'bias_initializer': keras.initializers.serialize(self.bias_initializer),
'kernel_regularizer': keras.regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': keras.regularizers.serialize(self.bias_regularizer),
'kernel_constraint': keras.constraints.serialize(self.kernel_constraint),
'bias_constraint': keras.constraints.serialize(self.bias_constraint),
'history_only': self.history_only,
}
base_config = super(MultiHeadAttention, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
if isinstance(input_shape, list):
q, k, v = input_shape
return q[:-1] + (v[-1],)
return input_shape
def compute_mask(self, inputs, input_mask=None):
if isinstance(input_mask, list):
return input_mask[0]
return input_mask
def build(self, input_shape):
if isinstance(input_shape, list):
q, k, v = input_shape
else:
q = k = v = input_shape
feature_dim = v[-1]
if feature_dim % self.head_num != 0:
raise IndexError('Invalid head number %d with the given input dim %d' % (self.head_num, feature_dim))
self.Wq = self.add_weight(
shape=(q[-1], feature_dim),
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
name='%s_Wq' % self.name,
)
if self.use_bias:
self.bq = self.add_weight(
shape=(feature_dim,),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
name='%s_bq' % self.name,
)
self.Wk = self.add_weight(
shape=(k[-1], feature_dim),
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
name='%s_Wk' % self.name,
)
if self.use_bias:
self.bk = self.add_weight(
shape=(feature_dim,),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
name='%s_bk' % self.name,
)
self.Wv = self.add_weight(
shape=(v[-1], feature_dim),
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
name='%s_Wv' % self.name,
)
if self.use_bias:
self.bv = self.add_weight(
shape=(feature_dim,),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
name='%s_bv' % self.name,
)
self.Wo = self.add_weight(
shape=(feature_dim, feature_dim),
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
name='%s_Wo' % self.name,
)
if self.use_bias:
self.bo = self.add_weight(
shape=(feature_dim,),
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
name='%s_bo' % self.name,
)
super(MultiHeadAttention, self).build(input_shape)
@staticmethod
def _reshape_to_batches(x, head_num):
input_shape = K.shape(x)
batch_size, seq_len, feature_dim = input_shape[0], input_shape[1], input_shape[2]
head_dim = feature_dim // head_num
x = K.reshape(x, (batch_size, seq_len, head_num, head_dim))
x = K.permute_dimensions(x, [0, 2, 1, 3])
return K.reshape(x, (batch_size * head_num, seq_len, head_dim))
@staticmethod
def _reshape_from_batches(x, head_num):
input_shape = K.shape(x)
batch_size, seq_len, feature_dim = input_shape[0], input_shape[1], input_shape[2]
x = K.reshape(x, (batch_size // head_num, head_num, seq_len, feature_dim))
x = K.permute_dimensions(x, [0, 2, 1, 3])
return K.reshape(x, (batch_size // head_num, seq_len, feature_dim * head_num))
@staticmethod
def _reshape_mask(mask, head_num):
if mask is None:
return mask
seq_len = K.shape(mask)[1]
mask = K.expand_dims(mask, axis=1)
mask = K.tile(mask, [1, head_num, 1])
return K.reshape(mask, (-1, seq_len))
def call(self, inputs, mask=None):
if isinstance(inputs, list):
q, k, v = inputs
else:
q = k = v = inputs
if isinstance(mask, list):
q_mask, k_mask, v_mask = mask
else:
q_mask = k_mask = v_mask = mask
q = K.dot(q, self.Wq)
k = K.dot(k, self.Wk)
v = K.dot(v, self.Wv)
if self.use_bias:
q += self.bq
k += self.bk
v += self.bv
if self.activation is not None:
q = self.activation(q)
k = self.activation(k)
v = self.activation(v)
y = ScaledDotProductAttention(
history_only=self.history_only,
name='%s-Attention' % self.name,
)(
inputs=[
self._reshape_to_batches(q, self.head_num),
self._reshape_to_batches(k, self.head_num),
self._reshape_to_batches(v, self.head_num),
],
mask=[
self._reshape_mask(q_mask, self.head_num),
self._reshape_mask(k_mask, self.head_num),
self._reshape_mask(v_mask, self.head_num),
],
)
y = self._reshape_from_batches(y, self.head_num)
y = K.dot(y, self.Wo)
if self.use_bias:
y += self.bo
if self.activation is not None:
y = self.activation(y)
return y