forked from wutong16/Adversarial_Long-Tail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
326 lines (289 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from __future__ import print_function
import os
import argparse
import shutil
import yaml
from mmcv import Config
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import mmcv
import time
from models.backbones.resnet import *
from methods.train_modes import trades_train, pgd_adv_train, plain_train, \
mixup_vertex_train, inner_loss_train, add_reg_train
from datasets.builder import build_datasets
from datasets.loader.build_loader import build_dataloader
from utils.env import get_root_logger, set_random_seed, set_default_configs, \
load_checkpoint, init_dist, logger_info, _CustomDataParallel
from models.Networks import Networks
from attacks.pgd_attack import eval_adv_test_whitebox_pgd
from attacks.other_attacks import eval_adv_test_whitebox_full
from attacks.auto_attack import eval_auto_attack
parser = argparse.ArgumentParser(description='PyTorch CIFAR-LT Adversarial Training')
parser.add_argument('config',
default='./configs/cifar10_plain.yaml',
help='path to config file')
parser.add_argument('--gpu', default=0, type=int,
help='which gpu to use')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--rename', '-r', action='store_true', default=False,
help='whether allow renaming the checkpoints parameter to match')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
set_random_seed(args.seed)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
device = torch.device("cuda")
else:
distributed = True
init_dist(args.launcher)
local_rank = torch.distributed.get_rank()
# torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
print("Using", torch.cuda.device_count(), "GPUs.")
# set configs
with open(args.config) as cf:
cfgs = Config(yaml.safe_load(cf))
if not os.path.exists(cfgs.model_dir):
os.makedirs(cfgs.model_dir)
shutil.copyfile(args.config, os.path.join(cfgs.model_dir, args.config.split('/')[-1]))
set_default_configs(cfgs)
# setup logger
logger = get_root_logger(cfgs.log_level, cfgs.model_dir)
logger_info(logger, distributed, "Loading config file from {}".format(args.config))
logger_info(logger, distributed, "Models saved at {}".format(cfgs.model_dir))
writter = SummaryWriter(cfgs.model_dir + '/tensorboard')
# setup data loader
logger_info(logger, distributed, "Building datasets {} with imbalance ratio {} / existing ratio".format(
cfgs.dataset, cfgs.imbalance_ratio, cfgs.existing_ratio))
num_classes=cfgs.num_classes
trainset, samples_per_cls = build_datasets(name=cfgs.dataset, mode='train',
num_classes=num_classes,
imbalance_ratio=cfgs.imbalance_ratio,
existing_ratio=cfgs.existing_ratio,
root='../data')
testset, _ = build_datasets(name=cfgs.dataset, mode='test',
num_classes=num_classes, root='../data')
train_loader = build_dataloader(trainset, imgs_per_gpu=cfgs.batch_size, dist=distributed, sampler=cfgs.sampler, shuffle=True)
test_loader = build_dataloader(testset, imgs_per_gpu=cfgs.test_batch_size, dist=distributed, shuffle=False)
plain_train_loader = build_dataloader(trainset, imgs_per_gpu=cfgs.batch_size, dist=distributed, shuffle=False)
def train(cfgs, model, device, train_loader, optimizer, epoch, logger):
model.train()
model.epoch = epoch
start = time.time()
samples_total = len(train_loader) * cfgs.batch_size
# loss_func = Losses(samples_per_cls, num_classes, cfgs.loss_opt)
for batch_idx, (data, target) in enumerate(train_loader):
if not cfgs.cpu_data:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# calculate robust loss
loss_params = dict(
model=model, x_natural=data, y=target, optimizer=optimizer,
step_size=cfgs.train_step_size, epsilon=cfgs.train_epsilon,
perturb_steps=cfgs.train_num_steps, targeted=cfgs.targeted,
target_opt=cfgs.target_opt, samples_per_cls=samples_per_cls,
deffer_opt=cfgs.deffer_opt
)
if 'plain' == cfgs.train_mode:
loss = plain_train(**loss_params)
elif 'pgd_at' == cfgs.train_mode:
other_params = cfgs.other_params
loss = pgd_adv_train(**loss_params, **other_params)
elif 'trades' == cfgs.train_mode:
loss = trades_train(beta=cfgs.beta, **loss_params)
elif 'AVmix' == cfgs.train_mode:
loss = mixup_vertex_train(**loss_params)
elif 'inner_loss' == cfgs.train_mode:
loss = inner_loss_train(**loss_params)
elif 'add_reg' in cfgs.train_mode:
extra_params = cfgs.train_mode['add_reg']
loss = add_reg_train(**loss_params, **extra_params)
else:
raise NameError
loss.backward()
optimizer.step()
# print progress
if batch_idx % cfgs.log_interval == 0:
logger_info(logger, distributed, 'Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.4f} time:{:.3f}'.format(
epoch, batch_idx * len(data), samples_total,
100. * batch_idx / len(train_loader), loss.item(),
time.time()-start))
if 'our' in cfgs.train_mode:
if distributed:
model.module.classifier.on_epoch()
else:
if hasattr(model.classifier, 'on_epoch'):
model.classifier.on_epoch()
print('Operating on epoch!')
def eval_train(cfgs, model, device, train_loader, logger):
model.eval()
train_loss = 0
correct = 0
with torch.no_grad():
for data, target in train_loader:
data, target = data.to(device), target.to(device)
output = model(data)
train_loss += F.cross_entropy(output, target, reduction='sum').item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
logger_info(logger, distributed, 'Training: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
train_loss, correct, len(train_loader.dataset),
100. * correct / len(train_loader) / cfgs.batch_size))
training_accuracy = correct / len(train_loader.dataset)
return train_loss, training_accuracy
def eval_test(model, device, test_loader, logger):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
logger_info(logger, distributed, 'Test: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test_accuracy = correct / len(test_loader.dataset)
return test_loss, test_accuracy
def feature_ext(cfgs, model, device, data_loader, logger, feature_path):
""" extract and save features """
model.eval()
samples_total = len(data_loader) * cfgs.batch_size
print('sample_total {}, num_iterations {}'.format(samples_total, len(data_loader)))
features = []
labels = []
for batch_idx, (data, target) in enumerate(data_loader):
data, target = data.to(device), target.to(device)
feature = model.backbone(data)
features.append(feature.cpu().detach().numpy())
labels.extend(target.cpu().detach().numpy().tolist())
features = np.vstack(features)
print('feature shape: ', features.shape, 'label shape: ', len(labels))
mmcv.dump(dict(features=features, labels=labels), feature_path)
logger_info(logger, distributed, 'Feature extracted with {} samples and saved at {}'.format(
samples_total, feature_path))
def adjust_learning_rate(optimizer, epoch, lr_decline=(60, 75, 90), warmup_epochs=0):
""" decrease the learning rate """
decay = 1.
for epoch_d in lr_decline:
if epoch >= epoch_d:
decay *= 0.1
if decay < 1.:
logger_info(logger, distributed, "learning rate decay by {:.3f}".format(decay))
if epoch < warmup_epochs:
decay = (epoch + 1) / warmup_epochs
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * decay
def assign_learning_rate(model, lr_dict):
""" assign learning rate for different parts
lr_dict: {module key word: lr}
"""
params = []
logger_info(logger, distributed, "set specific learning rate: ")
text = ""
for k, v in lr_dict.items():
text += "{} : {}\t".format(k, v)
logger_info(logger, distributed, text)
for name, param in model.named_parameters():
param_group = {'params': [param]}
part = name.split('.')[0]
for key, lr in lr_dict.items():
if key in name:
param_group['lr'] = lr
print(name, end=' ')
break
if 'lr' not in param_group:
param_group['lr'] = lr_dict['else']
params.append(param_group)
print("done.")
return params
def main():
# init model
model = Networks(cfgs, num_classes=num_classes, samples_per_cls=samples_per_cls).cuda()
if distributed:
raise NotImplementedError
# # Currently distributed training is not well supported
# # because the performance would drop for some unknown reason.
# sync_bn_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
# model = torch.nn.parallel.DistributedDataParallel(
# sync_bn_model, device_ids=[local_rank], output_device=local_rank)
# print("local rank: {}".format(local_rank))
else:
model = _CustomDataParallel(model)
logger_info(logger, distributed, 'num_samples {}, num_iterations {}'.format(
len(trainset), len(train_loader)))
# load checkpoint
load_path = None
if cfgs.load_model is not None:
load_path = cfgs.load_model
print('here')
elif cfgs.resume_epoch > 0:
load_path = os.path.join(cfgs.model_dir, 'epoch{}.pt'.format(cfgs.resume_epoch))
if load_path is not None:
assert os.path.exists(load_path), load_path
load_checkpoint(model, logger, load_path, load_modules=cfgs.load_modules, rename=args.rename)
if getattr(model, 'load_model', None):
model.load_model(cfgs.model_dir)
# extract feature and calculate centroids if needed
feature_path = cfgs.model_dir + '/feature.pkl'
if cfgs.feature_ext:
feature_ext(cfgs, model, device, plain_train_loader, logger, feature_path)
if cfgs.centroids:
model.classifier.centroids_cal(feature_path)
# assign learning rate
if cfgs.lr_dict is not None:
params = assign_learning_rate(model, cfgs.lr_dict)
optimizer = optim.SGD(params, lr=cfgs.lr, momentum=cfgs.momentum, weight_decay=cfgs.weight_decay)
else:
optimizer = optim.SGD(model.parameters(), lr=cfgs.lr, momentum=cfgs.momentum, weight_decay=cfgs.weight_decay)
start_epoch = cfgs.resume_epoch + 1
for epoch in range(start_epoch, cfgs.epochs + 1):
# adjust learning rate for SGD
adjust_learning_rate(optimizer, epoch, cfgs.lr_decline, cfgs.warmup_epochs)
# adversarial training
train(cfgs, model, device, train_loader, optimizer, epoch, logger)
# evaluation
eval_batches = 20
# since we choose the model from the last epoch in all the experiments without the strategy of early-stop
# we only evaluate part of the test set during training (could also raise the number to eval the whole.).
if epoch % cfgs.eval_freq == 0 or epoch == 76:
print('================================================================')
train_loss, train_accuracy = eval_train(cfgs, model, device, train_loader, logger)
test_loss, test_accuracy = eval_test(model, device, test_loader, logger)
writter.add_scalars('acc', {'train': train_accuracy, 'test': test_accuracy}, epoch)
writter.add_scalars('loss', {'train': train_loss, 'test': test_loss}, epoch)
eval_adv_test_whitebox_pgd(model, device, cfgs, logger, test_loader, num_classes, mode='train', eval_batches=eval_batches)
eval_adv_test_whitebox_full(model, cfgs, device, logger, test_loader, 'CW', eval_batches=eval_batches)
print('================================================================')
# save checkpoint
if epoch % cfgs.save_freq == 0 or epoch == 76: #and epoch >= cfgs.begin_save:
if getattr(model.classifier, 'save_model', None):
model.classifier.save_model(cfgs.model_dir)
# save extra parameters
if not distributed:
torch.save(model.state_dict(),
os.path.join(cfgs.model_dir, 'epoch{}.pt'.format(epoch)))
else:
if local_rank == 0:
torch.save(model.state_dict(),
os.path.join(cfgs.model_dir, 'epoch{}.pt'.format(epoch)))
eval_adv_test_whitebox_pgd(model, device, cfgs, logger, test_loader, num_classes)
eval_adv_test_whitebox_full(model, cfgs, device, logger, test_loader, 'CW')
eval_adv_test_whitebox_full(model, cfgs, device, logger, test_loader, 'MIM')
eval_auto_attack(model, device, cfgs, logger, test_loader)
logger_info(logger, distributed, '[Remarks] {} | End of training, saved at {}'.format(cfgs.remark, cfgs.model_dir))
writter.close()
if __name__ == '__main__':
main()