forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_cpp_extensions.py
executable file
·393 lines (320 loc) · 13.5 KB
/
test_cpp_extensions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import shutil
import sys
import unittest
import torch
import torch.utils.cpp_extension
import torch.backends.cudnn
try:
import torch_test_cpp_extension.cpp as cpp_extension
except ImportError:
print("\'test_cpp_extensions.py\' cannot be invoked directly. " +
"Run \'python run_test.py -i cpp_extensions\' for the \'test_cpp_extensions.py\' tests.")
raise
import common
from torch.utils.cpp_extension import CUDA_HOME
TEST_CUDA = torch.cuda.is_available() and CUDA_HOME is not None
TEST_CUDNN = False
if TEST_CUDA:
CUDNN_HEADER_EXISTS = os.path.isfile(os.path.join(CUDA_HOME, 'include/cudnn.h'))
TEST_CUDNN = TEST_CUDA and CUDNN_HEADER_EXISTS and torch.backends.cudnn.is_available()
IS_WINDOWS = sys.platform == 'win32'
class TestCppExtension(common.TestCase):
def setUp(self):
if sys.platform != 'win32':
default_build_root = torch.utils.cpp_extension.get_default_build_root()
if os.path.exists(default_build_root):
shutil.rmtree(default_build_root)
def test_extension_function(self):
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = cpp_extension.sigmoid_add(x, y)
self.assertEqual(z, x.sigmoid() + y.sigmoid())
def test_extension_module(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4)
expected = mm.get().mm(weights)
result = mm.forward(weights)
self.assertEqual(expected, result)
def test_backward(self):
mm = cpp_extension.MatrixMultiplier(4, 8)
weights = torch.rand(8, 4, requires_grad=True)
result = mm.forward(weights)
result.sum().backward()
tensor = mm.get()
expected_weights_grad = tensor.t().mm(torch.ones([4, 4]))
self.assertEqual(weights.grad, expected_weights_grad)
expected_tensor_grad = torch.ones([4, 4]).mm(weights.t())
self.assertEqual(tensor.grad, expected_tensor_grad)
def test_jit_compile_extension(self):
module = torch.utils.cpp_extension.load(
name='jit_extension',
sources=[
'cpp_extensions/jit_extension.cpp',
'cpp_extensions/jit_extension2.cpp'
],
extra_include_paths=['cpp_extensions'],
extra_cflags=['-g'],
verbose=True)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
# Checking we can call a method defined not in the main C++ file.
z = module.exp_add(x, y)
self.assertEqual(z, x.exp() + y.exp())
# Checking we can use this JIT-compiled class.
doubler = module.Doubler(2, 2)
self.assertIsNone(doubler.get().grad)
self.assertEqual(doubler.get().sum(), 4)
self.assertEqual(doubler.forward().sum(), 8)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_cuda_extension(self):
import torch_test_cpp_extension.cuda as cuda_extension
x = torch.zeros(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
z = cuda_extension.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_jit_cuda_extension(self):
# NOTE: The name of the extension must equal the name of the module.
module = torch.utils.cpp_extension.load(
name='torch_test_cuda_extension',
sources=[
'cpp_extensions/cuda_extension.cpp',
'cpp_extensions/cuda_extension.cu'
],
extra_cuda_cflags=['-O2'],
verbose=True)
x = torch.zeros(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
z = module.sigmoid_add(x, y).cpu()
# 2 * sigmoid(0) = 2 * 0.5 = 1
self.assertEqual(z, torch.ones_like(z))
@unittest.skipIf(not TEST_CUDNN, "CuDNN not found")
def test_jit_cudnn_extension(self):
# implementation of CuDNN ReLU
if sys.platform == 'win32':
extra_ldflags = ['cudnn.lib']
else:
extra_ldflags = ['-lcudnn']
module = torch.utils.cpp_extension.load(
name='torch_test_cudnn_extension',
sources=[
'cpp_extensions/cudnn_extension.cpp'
],
extra_ldflags=extra_ldflags,
verbose=True,
with_cuda=True)
x = torch.randn(100, device='cuda', dtype=torch.float32)
y = torch.zeros(100, device='cuda', dtype=torch.float32)
module.cudnn_relu(x, y) # y=relu(x)
self.assertEqual(torch.nn.functional.relu(x), y)
with self.assertRaisesRegex(RuntimeError, "same size"):
y_incorrect = torch.zeros(20, device='cuda', dtype=torch.float32)
module.cudnn_relu(x, y_incorrect)
def test_optional(self):
has_value = cpp_extension.function_taking_optional(torch.ones(5))
self.assertTrue(has_value)
has_value = cpp_extension.function_taking_optional(None)
self.assertFalse(has_value)
def test_inline_jit_compile_extension_with_functions_as_list(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_with_functions_list',
cpp_sources=cpp_source,
functions='tanh_add',
verbose=True)
self.assertEqual(module.tanh_add.__doc__.split('\n')[2], 'tanh_add')
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.tanh_add(x, y)
self.assertEqual(z, x.tanh() + y.tanh())
def test_inline_jit_compile_extension_with_functions_as_dict(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_with_functions_dict',
cpp_sources=cpp_source,
functions={'tanh_add': 'Tanh and then sum :D'},
verbose=True)
self.assertEqual(
module.tanh_add.__doc__.split('\n')[2], 'Tanh and then sum :D')
def test_inline_jit_compile_extension_multiple_sources_and_no_functions(self):
cpp_source1 = '''
at::Tensor sin_add(at::Tensor x, at::Tensor y) {
return x.sin() + y.sin();
}
'''
cpp_source2 = '''
#include <torch/extension.h>
at::Tensor sin_add(at::Tensor x, at::Tensor y);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("sin_add", &sin_add, "sin(x) + sin(y)");
}
'''
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension',
cpp_sources=[cpp_source1, cpp_source2],
verbose=True)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
z = module.sin_add(x, y)
self.assertEqual(z, x.sin() + y.sin())
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_inline_jit_compile_extension_cuda(self):
cuda_source = '''
__global__ void cos_add_kernel(
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ output,
const int size) {
const auto index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < size) {
output[index] = __cosf(x[index]) + __cosf(y[index]);
}
}
at::Tensor cos_add(at::Tensor x, at::Tensor y) {
auto output = at::zeros_like(x);
const int threads = 1024;
const int blocks = (output.numel() + threads - 1) / threads;
cos_add_kernel<<<blocks, threads>>>(x.data<float>(), y.data<float>(), output.data<float>(), output.numel());
return output;
}
'''
# Here, the C++ source need only declare the function signature.
cpp_source = 'at::Tensor cos_add(at::Tensor x, at::Tensor y);'
module = torch.utils.cpp_extension.load_inline(
name='inline_jit_extension_cuda',
cpp_sources=cpp_source,
cuda_sources=cuda_source,
functions=['cos_add'],
verbose=True)
self.assertEqual(module.cos_add.__doc__.split('\n')[2], 'cos_add')
x = torch.randn(4, 4, device='cuda', dtype=torch.float32)
y = torch.randn(4, 4, device='cuda', dtype=torch.float32)
z = module.cos_add(x, y)
self.assertEqual(z, x.cos() + y.cos())
def test_inline_jit_compile_extension_throws_when_functions_is_bad(self):
with self.assertRaises(ValueError):
torch.utils.cpp_extension.load_inline(
name='invalid_jit_extension', cpp_sources='', functions=5)
def test_lenient_flag_handling_in_jit_extensions(self):
cpp_source = '''
at::Tensor tanh_add(at::Tensor x, at::Tensor y) {
return x.tanh() + y.tanh();
}
'''
module = torch.utils.cpp_extension.load_inline(
name='lenient_flag_handling_extension',
cpp_sources=cpp_source,
functions='tanh_add',
extra_cflags=['-g\n\n', '-O0 -Wall'],
extra_include_paths=[' cpp_extensions\n'],
verbose=True)
x = torch.zeros(100, dtype=torch.float32)
y = torch.zeros(100, dtype=torch.float32)
z = module.tanh_add(x, y).cpu()
self.assertEqual(z, x.tanh() + y.tanh())
def test_complex_registration(self):
module = torch.utils.cpp_extension.load(
name='complex_registration_extension',
sources='cpp_extensions/complex_registration_extension.cpp',
verbose=True)
torch.empty(2, 2, dtype=torch.complex64)
@unittest.skipIf(not TEST_CUDA, "CUDA not found")
def test_half_support(self):
'''
Checks for an issue with operator< ambiguity for half when certain
THC headers are included.
See https://github.com/pytorch/pytorch/pull/10301#issuecomment-416773333
for the corresponding issue.
'''
cuda_source = '''
#include <THC/THCNumerics.cuh>
template<typename T, typename U>
__global__ void half_test_kernel(const T* input, U* output) {
if (input[0] < input[1] || input[0] >= input[1]) {
output[0] = 123;
}
}
at::Tensor half_test(at::Tensor input) {
auto output = at::empty(1, input.options().dtype(at::kFloat));
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "half_test", [&] {
half_test_kernel<scalar_t><<<1, 1>>>(
input.data<scalar_t>(),
output.data<float>());
});
return output;
}
'''
module = torch.utils.cpp_extension.load_inline(
name='half_test_extension',
cpp_sources='at::Tensor half_test(at::Tensor input);',
cuda_sources=cuda_source,
functions=['half_test'],
verbose=True)
x = torch.randn(3, device='cuda', dtype=torch.half)
result = module.half_test(x)
self.assertEqual(result[0], 123)
def test_reload_jit_extension(self):
def compile(code):
return torch.utils.cpp_extension.load_inline(
name='reloaded_jit_extension',
cpp_sources=code,
functions='f',
verbose=True)
module = compile('int f() { return 123; }')
self.assertEqual(module.f(), 123)
module = compile('int f() { return 456; }')
self.assertEqual(module.f(), 456)
module = compile('int f() { return 456; }')
self.assertEqual(module.f(), 456)
module = compile('int f() { return 789; }')
self.assertEqual(module.f(), 789)
@unittest.skipIf(IS_WINDOWS, "C++ API not yet supported on Windows")
def test_cpp_api_extension(self):
here = os.path.abspath(__file__)
pytorch_root = os.path.dirname(os.path.dirname(here))
api_include = os.path.join(pytorch_root, 'torch', 'csrc', 'api', 'include')
module = torch.utils.cpp_extension.load(
name='cpp_api_extension',
sources='cpp_extensions/cpp_api_extension.cpp',
extra_include_paths=api_include,
extra_cflags=[] if IS_WINDOWS else ['-UTORCH_API_INCLUDE_EXTENSION_H'],
verbose=True)
net = module.Net(3, 5)
self.assertTrue(net.training)
net.eval()
self.assertFalse(net.training)
net.train()
self.assertTrue(net.training)
net.eval()
input = torch.randn(2, 3, dtype=torch.float32)
output = net.forward(input)
self.assertEqual(output, net.forward(input))
self.assertEqual(list(output.shape), [2, 5])
bias = net.get_bias()
self.assertEqual(list(bias.shape), [5])
net.set_bias(bias + 1)
self.assertEqual(net.get_bias(), bias + 1)
output2 = net.forward(input)
self.assertNotEqual(output + 1, output2)
self.assertEqual(len(net.parameters()), 4)
p = net.named_parameters()
self.assertEqual(type(p), dict)
self.assertEqual(len(p), 4)
self.assertIn('fc.weight', p)
self.assertIn('fc.bias', p)
self.assertIn('bn.weight', p)
self.assertIn('bn.bias', p)
if __name__ == '__main__':
common.run_tests()