forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_lazy_tensor.py
605 lines (556 loc) · 22.7 KB
/
gen_lazy_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import argparse
import os
import pathlib
import re
from collections import Counter, namedtuple
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Sequence,
Tuple,
Type,
Union,
)
import yaml
import torchgen.dest as dest
from torchgen.api.lazy import setValueT
from torchgen.api.types import BaseCppType
from torchgen.dest.lazy_ir import GenLazyIR, GenLazyNativeFuncDefinition, GenTSLazyIR
from torchgen.gen import get_grouped_native_functions, parse_native_yaml
from torchgen.model import NativeFunction, NativeFunctionsGroup, OperatorName
from torchgen.selective_build.selector import SelectiveBuilder
from torchgen.utils import concatMap, FileManager, NamespaceHelper
from torchgen.yaml_utils import YamlLoader
from .gen_backend_stubs import (
error_on_missing_kernels,
gen_dispatcher_registrations,
gen_dispatchkey_nativefunc_headers,
parse_backend_yaml,
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Lazy Tensor Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# Overview
# ~~~~~~~~
#
# This codegen script builds on existing data models and helpers used
# by all ATen backends, and adds new functionality specific to lazy
# tensor backends.
#
# Inputs:
# - <backend>_native_functions.yaml: controls which operators are
# supported by the backend.
#
# Outputs:
# (for all backends)
# <DispatchKey>Ir.h defines Lazy IR classes to be constructed during tracing
# - opt-in: also generate 'lowering' methods for the TorchScript backend only
# <DispatchKey>NativeFunctions.cpp defines implementations of native functions which perform lazy tracing
# - opt-in: 'full_codegen' section of backend yaml; 'supported' section omits these implementations
# <DispatchKey>NativeFunctions.h declares implementations of native functions for both 'supported' and 'full_codegen'
# ops
#
# Register<DispatchKey>.cpp registers all op implementations with the dispatcher
# RegisterAutograd<DispatchKey>.cpp registers all autograd implementations with the dispatcher
#
# Validation Helpers:
# - Shape Inference: errs if any ops in backend yaml require shape inference not provided by meta kernels or
# implementations in torch/csrc/lazy/core/shape_inference.*
# - native function impls: errs if any 'supported' ops do not have an implementation defined in the backend
# (non-codegen) implementation file
#
#
# About the Data Model
# ~~~~~~~~~~~~~~~~~~~~
#
# Modeled after ATen codegen, the first step is to parse yaml and build a data model for the operators
# we care about. In this case, the <backend>_native_functions yaml defines a subset of the core operators
# (defined in more detail in the main native_functions.yaml), which will be supported by your backend.
# Backends can list ops in two categories:
# - `supported` ops require hand-implementations but still get codegenned declarations and registrations
# - `full_codegen` ops get implementations (and IR classes) generated too
#
# Each native function is modeled as an object with a schema, and each schema has objects representing their
# arguments. Much of the codegen is manipulation of the arguments and their types. For example, lazy tensor
# backends need to transform 'at::Tensor' arguments into 'lazy::Value' objects, as well as replacing reference
# types (stringref) with actual string objects, and this is done by manipulating the data model objects.
# - see api/lazy.py for the lazy data model
#
# Once the data model is set up, the rest of this script processes a number of templates for output CPP file
# and fills in the template values using helpers in `dest/lazy_ir.py` and `dest/lazy_ts_lowering.py`. These
# helpers mostly iterate over functions and their arguments, outputting different c++ snippets.
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
ParsedExternalYaml = namedtuple(
"ParsedExternalYaml",
["backend_key", "autograd_key", "cpp_namespace", "backend_indices", "full_codegen"],
)
def parse_native_functions_keys(
backend_yaml_path: str,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
) -> Tuple[List[OperatorName], List[Any], List[OperatorName]]:
native_functions_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()),
grouped_native_functions,
)
}
with open(backend_yaml_path) as f:
yaml_values = yaml.load(f, Loader=YamlLoader)
assert isinstance(yaml_values, dict)
full_codegen = yaml_values.pop("full_codegen", [])
non_native = yaml_values.pop("non_native", [])
ir_gen = yaml_values.pop("ir_gen", [])
assert isinstance(full_codegen, list)
assert isinstance(non_native, list)
assert isinstance(ir_gen, list)
full_codegen_opnames = [OperatorName.parse(name) for name in full_codegen]
ir_gen_opnames = [OperatorName.parse(name) for name in ir_gen]
return full_codegen_opnames, non_native, ir_gen_opnames
def validate_shape_inference_header(
shape_inference_hdr: str, expected_shape_infr_decls: List[str]
) -> None:
try:
with open(shape_inference_hdr) as f:
shape_infr_decls = f.read()
shape_infr_decl_lines = set(shape_infr_decls.split("\n"))
except OSError as e:
raise AssertionError(
f"Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}"
) from e
shape_infr_regex = r"compute_shape_(\w+)"
actual_shape_infr_name_counts = Counter(
re.findall(shape_infr_regex, shape_infr_decls)
)
# TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired.
missing_decls = [
decl for decl in expected_shape_infr_decls if decl not in shape_infr_decl_lines
]
if missing_decls:
raise Exception(
f"""Missing shape inference function.\n
Please add declare this function in {shape_inference_hdr}:\n
and implement it in the the corresponding shape_inference.cpp file.\n
{os.linesep.join(missing_decls)}"""
)
# Some helper functions for the codegen.
def get_ltc_helper_fns() -> str:
return """\
at::Tensor to_meta(const at::Tensor& tensor) {
// undefined tensors can't be converted to the meta device, since they don't have sizes/strides
if (!tensor.defined()) return tensor;
auto out = at::native::empty_strided_meta_symint(tensor.sym_sizes(), tensor.sym_strides(), \
/*dtype=*/c10::make_optional(tensor.scalar_type()), /*layout=*/c10::make_optional(tensor.layout()), \
/*device=*/c10::make_optional(c10::Device(c10::kMeta)), /*pin_memory=*/c10::nullopt);
// needs to handle wrapped numbers, so dtype promotion works properly.
if (tensor.unsafeGetTensorImpl()->is_wrapped_number()) {
out.unsafeGetTensorImpl()->set_wrapped_number(true);
}
return out;
}
c10::optional<at::Tensor> to_meta(const c10::optional<at::Tensor>& tensor) {
if (tensor.has_value()) {
return to_meta(*tensor);
}
return c10::nullopt;
}
std::vector<at::Tensor> to_meta(at::ITensorListRef t_list) {
std::vector<at::Tensor> outs;
outs.reserve(t_list.size());
for (const auto& tensor : t_list) {
outs.push_back(to_meta(tensor));
}
return outs;
}
"""
class default_args:
node_base: str = "Node"
node_base_hdr: Optional[str] = None
shape_inference_hdr: str = "torch/csrc/lazy/core/shape_inference.h"
tensor_class: str = "torch::lazy::LazyTensor"
tensor_class_hdr: str = "torch/csrc/lazy/core/tensor.h"
lazy_ir_generator: Type[GenLazyIR] = GenLazyIR
native_func_definition_generator: Type[
GenLazyNativeFuncDefinition
] = GenLazyNativeFuncDefinition
backend_name: str = "TorchScript"
def main() -> None:
parser = argparse.ArgumentParser(description="Generate Lazy Tensor backend files")
parser.add_argument(
"-s",
"--source-yaml",
"--source_yaml",
help="path to source yaml file containing operator external definitions",
)
parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory")
parser.add_argument(
"--dry-run", "--dry_run", type=bool, default=False, help="output directory"
)
parser.add_argument(
"--impl-path",
"--impl_path",
type=str,
default=None,
help="path to the source C++ file containing kernel definitions",
)
parser.add_argument(
"--gen-ts-lowerings",
"--gen_ts_lowerings",
action="store_true",
help="Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions",
)
parser.add_argument(
"--node-base",
"--node_base",
type=str,
default=default_args.node_base,
help="Name of backend specific custom Lazy IR Node base class",
)
parser.add_argument(
"--node-base-hdr",
"--node_base_hdr",
type=str,
default=default_args.node_base_hdr,
help="Path to header file defining custom Lazy IR Node base class",
)
parser.add_argument(
"--shape-inference-hdr",
"--shape_inference_hdr",
type=str,
default=default_args.shape_inference_hdr,
help="Path to header file defining custom Lazy shape inference functions",
)
parser.add_argument(
"--tensor-class",
"--tensor_class",
type=str,
default=default_args.tensor_class,
help="Name of backend specific custom Lazy Tensor class",
)
parser.add_argument(
"--tensor-class-hdr",
"--tensor_class_hdr",
type=str,
default=default_args.tensor_class_hdr,
help="Path to header file defining custom Lazy Tensor class",
)
parser.add_argument(
"--backend-name",
"--backend_name",
type=str,
default=default_args.backend_name,
help="Name of the backend to generate",
)
options = parser.parse_args()
# Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py
torch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
aten_path = str(torch_root / "aten" / "src" / "ATen")
lazy_ir_generator: Type[GenLazyIR] = default_args.lazy_ir_generator
if options.gen_ts_lowerings:
lazy_ir_generator = GenTSLazyIR
native_func_definition_generator: Type[
GenLazyNativeFuncDefinition
] = default_args.native_func_definition_generator
run_gen_lazy_tensor(
aten_path,
options.source_yaml,
options.output_dir,
options.dry_run,
options.impl_path,
options.node_base,
options.node_base_hdr,
options.tensor_class,
options.tensor_class_hdr,
options.shape_inference_hdr,
lazy_ir_generator,
native_func_definition_generator,
options.backend_name,
)
def run_gen_lazy_tensor(
aten_path: str,
source_yaml: str,
output_dir: str,
dry_run: bool,
impl_path: Optional[str],
node_base: str = default_args.node_base,
node_base_hdr: Optional[str] = default_args.node_base_hdr,
tensor_class: str = default_args.tensor_class,
tensor_class_hdr: str = default_args.tensor_class_hdr,
shape_inference_hdr: str = default_args.shape_inference_hdr,
lazy_ir_generator: Type[GenLazyIR] = default_args.lazy_ir_generator,
native_func_definition_generator: Type[
GenLazyNativeFuncDefinition
] = default_args.native_func_definition_generator,
# build_in_tree is true for TS backend and affects include paths
build_in_tree: bool = False,
# per_operator_headers changes whether ATen/Functions.h or individual operator headers are used
# it must match how ATen was built
per_operator_headers: bool = False,
backend_name: str = default_args.backend_name,
gen_forced_fallback_code: bool = False,
use_lazy_shape: bool = True,
# the following arguments are temporary customization points for xla backend migration.
# do not rely on them otherwise, they should be removed once migration is complete
backend_namespace: str = "torch::lazy",
get_tensorlist: str = "GetTensorList",
get_tensor_or_wrap_number: str = "GetLtcTensorOrCreateForWrappedNumber",
try_get_tensor: str = "TryGetLtcTensor",
metrics_counter: str = 'TORCH_LAZY_FN_COUNTER("lazy::")',
create_tensor: str = "LazyTensor::Create",
create_from_first_tensor: bool = False,
create_aten_from_ltc_tensor: str = "torch::lazy::CreateAtenFromLtcTensor",
tuple_aten_from_ltc_tensors: str = "torch::lazy::TupleAtenFromLtcTensors",
lazy_value_class: str = "torch::lazy::Value",
lazy_tensor_ptr: str = "LazyTensorPtr",
get_device_fn: str = "torch::lazy::GetBackendDevice",
) -> None:
lv_tokens = lazy_value_class.split("::")
lv_class = lv_tokens[-1]
lv_ns = "::".join(lv_tokens[:-1])
setValueT(BaseCppType(lv_ns, lv_class))
template_dir = os.path.join(aten_path, "templates")
def make_file_manager(install_dir: str) -> FileManager:
return FileManager(
install_dir=install_dir, template_dir=template_dir, dry_run=dry_run
)
fm = make_file_manager(output_dir)
native_yaml_path = os.path.join(aten_path, "native/native_functions.yaml")
tags_yaml_path = os.path.join(aten_path, "native/tags.yaml")
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path)
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
grouped_native_functions = get_grouped_native_functions(native_functions)
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
"""
We sort the native function because of the note in concat_map_codegen.
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
"""
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
return str(func.name.name)
grouped_native_functions = sorted(
grouped_native_functions, key=sort_native_function
)
parsed_backend_yaml = parse_backend_yaml(
source_yaml, grouped_native_functions, backend_indices
)
backend_key = parsed_backend_yaml.backend_key
autograd_key = parsed_backend_yaml.autograd_key
cpp_namespace = parsed_backend_yaml.cpp_namespace
backend_indices = parsed_backend_yaml.backend_indices
# the following 3 keys are all processed differently
# for full_codegen, we generate IR, kernels, etc
# for ir_gen, we generate only IR
# non_native is used to register kernels not declared in
# native_functions.yaml
full_codegen, non_native, ir_gen = parse_native_functions_keys(
source_yaml, grouped_native_functions
)
def concat_map_codegen(
func: Callable[[NativeFunction], Sequence[str]],
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
ops_list: List[OperatorName] = full_codegen,
) -> Iterator[str]:
"""
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
only code-gen additional entries for the inplace variant for the native functions.
"""
for x in xs:
fs = list(x.functions()) if isinstance(x, NativeFunctionsGroup) else [x]
for f in fs:
if f.func.name in ops_list:
yield from func(f)
selector = SelectiveBuilder.get_nop_selector()
assert backend_key is not None
class_name = backend_indices[backend_key].native_function_class_name()
if impl_path is not None:
error_on_missing_kernels(
native_functions,
backend_indices,
backend_key,
autograd_key,
class_name,
impl_path,
full_codegen,
)
""" Validate Shape Inference Definitions
Generated lazy native functions all perform shape inference, by first using a meta:: kernel
if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator
knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature,
so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev
to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
the expected signature which can be copy-pasted into shape_inference.h.
compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported
to structured kernels.
See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information.
"""
if shape_inference_hdr is not None:
expected_shape_infr_decls = list(
concat_map_codegen(
dest.GenLazyShapeInferenceDefinition(
backend_indices[backend_key], tensor_class
),
grouped_native_functions,
)
)
validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls)
assert class_name is not None
# Generate nativefunction declarations
# Note, eager registrations is set to False for the lazy TS backend as another LTC backend
# may want to register their own lazy kernels instead of registering the TS ones.
# The registration will lazily happen when init_ts_backend is called.
gen_dispatchkey_nativefunc_headers(
fm,
class_name,
cpp_namespace,
backend_indices,
grouped_native_functions,
backend_key,
autograd_key,
backend_name,
)
# Generate Dispatcher registrations which hook up the nativefunctions
for dispatch_key in (
[backend_key] if autograd_key is None else [backend_key, autograd_key]
):
gen_dispatcher_registrations(
fm,
output_dir,
class_name,
backend_indices,
grouped_native_functions,
backend_key,
dispatch_key,
selector,
build_in_tree=build_in_tree,
per_operator_headers=per_operator_headers,
backend_name=backend_name,
eager_registration=False,
)
# Generate native function impls that build IR nodes
ns_helper = NamespaceHelper(cpp_namespace)
fm.write_with_template(
f"{backend_key}NativeFunctions.cpp",
"DispatchKeyNativeFunctions.cpp",
lambda: {
"includes": [
f"#include <{path}>"
for path in [
tensor_class_hdr,
shape_inference_hdr,
"ATen/Functions.h",
"ATen/native/TensorConversions.h",
"ATen/NativeFunctions.h",
"ATen/CompositeExplicitAutogradNonFunctionalFunctions.h",
"ATen/MetaFunctions.h",
"ATen/Operators.h",
"ATen/native/CPUFallback.h",
"torch/csrc/lazy/core/ir_builder.h",
"torch/csrc/lazy/core/lazy_graph_executor.h",
"torch/csrc/lazy/core/metrics.h",
"torch/csrc/lazy/core/shape.h",
f"{output_dir}/{backend_key}NativeFunctions.h",
f"{output_dir}/LazyIr.h",
]
+ (
["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"]
if gen_forced_fallback_code
else []
)
],
"helper_fns": get_ltc_helper_fns(),
"native_functions_include": "",
"namespace_prologue": ns_helper.prologue,
"namespace_epilogue": ns_helper.epilogue,
"native_function_definitions": list(
concat_map_codegen(
native_func_definition_generator(
f"{backend_key}NativeFunctions",
backend_indices[backend_key],
tensor_class,
gen_forced_fallback_code,
backend_namespace,
get_tensorlist,
get_tensor_or_wrap_number,
try_get_tensor,
metrics_counter,
create_tensor,
create_from_first_tensor,
create_aten_from_ltc_tensor,
tuple_aten_from_ltc_tensors,
lazy_tensor_ptr,
get_device_fn,
),
grouped_native_functions,
)
),
},
)
# Generate IR node classes
lazy_ir_obj = lazy_ir_generator(
backend_indices[backend_key], backend_name, node_base, use_lazy_shape
)
fm.write_with_template(
"LazyIr.h",
"LazyIr.h",
lambda: {
"lazy_ir_sysinc": [
f"#include <{path}>"
for path in [
"ATen/core/Formatting.h",
"c10/core/ScalarType.h",
"c10/util/Optional.h",
"torch/csrc/lazy/core/hash.h",
"torch/csrc/lazy/core/ir.h",
"torch/csrc/lazy/core/shape.h",
"vector",
]
],
"lazy_ir_inc": [f'#include "{node_base_hdr}"']
if node_base_hdr is not None
else [],
"ir_declarations": list(
concat_map_codegen(
lazy_ir_obj, grouped_native_functions, full_codegen + ir_gen
)
),
"namespace_prologue": ns_helper.prologue,
"namespace_epilogue": ns_helper.epilogue,
},
)
# Generate Non Native IR Node classes
fm.write_with_template(
"LazyNonNativeIr.h",
"LazyNonNativeIr.h",
lambda: {
"lazy_non_native_ir_inc": [
f"#include <{path}>"
for path in [
"torch/csrc/lazy/core/ir.h",
"torch/csrc/lazy/core/ir_builder.h",
"torch/csrc/lazy/core/internal_ops/ltc_ops.h",
"torch/csrc/lazy/core/shape_inference.h",
]
+ ([node_base_hdr] if node_base_hdr else [])
if path
],
"non_native_ir_nodes": dest.generate_non_native_lazy_ir_nodes(
non_native, lazy_ir_obj
),
"namespace_prologue": ns_helper.prologue,
"namespace_epilogue": ns_helper.epilogue,
},
)
if __name__ == "__main__":
main()