forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_linalg_utils.py
129 lines (92 loc) · 3.5 KB
/
_linalg_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Various linear algebra utility methods for internal use.
"""
from typing import Optional, Tuple
import torch
from torch import Tensor
def is_sparse(A):
"""Check if tensor A is a sparse tensor"""
if isinstance(A, torch.Tensor):
return A.layout == torch.sparse_coo
error_str = "expected Tensor"
if not torch.jit.is_scripting():
error_str += " but got {}".format(type(A))
raise TypeError(error_str)
def get_floating_dtype(A):
"""Return the floating point dtype of tensor A.
Integer types map to float32.
"""
dtype = A.dtype
if dtype in (torch.float16, torch.float32, torch.float64):
return dtype
return torch.float32
def matmul(A: Optional[Tensor], B: Tensor) -> Tensor:
"""Multiply two matrices.
If A is None, return B. A can be sparse or dense. B is always
dense.
"""
if A is None:
return B
if is_sparse(A):
return torch.sparse.mm(A, B)
return torch.matmul(A, B)
def conjugate(A):
"""Return conjugate of tensor A.
.. note:: If A's dtype is not complex, A is returned.
"""
if A.is_complex():
return A.conj()
return A
def transpose(A):
"""Return transpose of a matrix or batches of matrices."""
ndim = len(A.shape)
return A.transpose(ndim - 1, ndim - 2)
def transjugate(A):
"""Return transpose conjugate of a matrix or batches of matrices."""
return conjugate(transpose(A))
def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor:
"""Return bilinear form of matrices: :math:`X^T A Y`."""
return matmul(transpose(X), matmul(A, Y))
def qform(A: Optional[Tensor], S: Tensor):
"""Return quadratic form :math:`S^T A S`."""
return bform(S, A, S)
def basis(A):
"""Return orthogonal basis of A columns."""
return torch.linalg.qr(A).Q
def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]:
"""Return eigenpairs of A with specified ordering."""
if largest is None:
largest = False
E, Z = torch.linalg.eigh(A, UPLO="U")
# assuming that E is ordered
if largest:
E = torch.flip(E, dims=(-1,))
Z = torch.flip(Z, dims=(-1,))
return E, Z
# These functions were deprecated and removed
# This nice error message can be removed in version 1.13+
def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor:
raise RuntimeError(
"This function was deprecated since version 1.9 and is now removed.",
"Please use the `torch.linalg.matrix_rank` function instead.",
)
def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
raise RuntimeError(
"This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.solve` function instead.",
)
def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]:
raise RuntimeError(
"This function was deprecated since version 1.9 and is now removed.",
"Please use the `torch.linalg.lstsq` function instead.",
)
def _symeig(
input, eigenvectors=False, upper=True, *, out=None
) -> Tuple[Tensor, Tensor]:
raise RuntimeError(
"This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.eigh` function instead.",
)
def eig(
self: Tensor, eigenvectors: bool = False, *, e=None, v=None
) -> Tuple[Tensor, Tensor]:
raise RuntimeError(
"This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.eig` function instead.",
)