forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecomposition.py
578 lines (479 loc) · 17.4 KB
/
decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import functools
import logging
import math
import typing
from typing import Optional
import torch
import torch._decomp as decomp
import torch._prims_common as utils
import torch.ao.quantization.fx._decomposed
from torch._decomp import (
core_aten_decompositions,
get_decompositions,
remove_decompositions,
)
from torch._decomp.decompositions import (
_grid_sampler_2d as decomp_grid_sampler_2d,
pw_cast_for_opmath,
)
from torch._decomp.decompositions_for_rng import extra_random_decomps
from torch._higher_order_ops.out_dtype import out_dtype
from torch._prims_common import type_to_dtype
from . import config, inductor_prims
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
quantized_decomposed = torch.ops.quantized_decomposed
inductor_decompositions = get_decompositions(
[
aten._adaptive_avg_pool2d_backward,
aten.arange,
aten.bitwise_and_,
aten.bitwise_or_,
aten.clamp_min_,
aten.dist,
aten.empty_like,
aten.flip,
aten.gelu,
aten.hardtanh,
aten.index_select,
aten.lcm,
aten.leaky_relu,
aten.linalg_vector_norm,
aten._log_softmax,
aten.max_pool2d_with_indices_backward,
aten._native_batch_norm_legit,
aten._native_batch_norm_legit_functional,
aten._native_batch_norm_legit_no_training,
aten.native_batch_norm,
aten.native_group_norm,
aten.native_layer_norm,
aten._softmax,
aten.sin_,
aten.sqrt_,
out_dtype,
aten._to_copy,
aten.tril_indices,
aten.triu_indices,
aten.upsample_bilinear2d.vec,
]
)
decompositions = {**core_aten_decompositions(), **inductor_decompositions}
# Remove unwanted decompositions included via the core ATen decompositions from
# the Inductor decomp table.
decomps_to_exclude = [
aten._unsafe_index,
aten._scaled_dot_product_flash_attention.default, # See comments in torch/_decomp/decompositions.py
aten.clamp_max,
aten.clamp_min,
aten.glu, # inductor lowers this directly
aten.split.Tensor, # inductor lowers this directly
aten.squeeze, # inductor lowers this directly
aten.sum, # inductor lowers this directly
aten.unbind, # inductor lowers this directly
]
remove_decompositions(decompositions, decomps_to_exclude)
def register_decomposition(ops):
for op in [ops] if callable(ops) else ops:
if op in decompositions:
log.warning("duplicate decomp: %s", ops)
return decomp.register_decomposition(ops, decompositions)
# TODO: for now, inductor doesn't handle asserts
# because the condition is symbool -> tensor in the graph.
@register_decomposition([aten._assert_async.msg])
def assert_async_msg_decomp(tensor, msg):
return
# Following `assert_async_msg_decomp` and implement as non-op.
@register_decomposition([aten._functional_assert_async.msg])
def functional_assert_async_msg_decomp(tensor, msg):
return
@register_decomposition([aten.sym_constrain_range_for_size.default])
def sym_constrain_range_for_size(symbol, *, min=None, max=None):
return
@register_decomposition([aten.clamp])
@pw_cast_for_opmath
def clamp(x, min=None, max=None):
if min is not None:
x = x.clamp_min(min)
if max is not None:
x = x.clamp_max(max)
return x
@register_decomposition([aten.full])
def full(size, fill_value, **kwargs):
dtype = kwargs.get("dtype")
if dtype is None:
kwargs["dtype"] = type_to_dtype(type(fill_value))
return aten.full(size, fill_value, **kwargs)
return NotImplemented
# Not really sure how to put this into the main library. PrimTorch wants
# empty_permuted to go to the prim, and typically users don't really want
# to decompose to empty_strided (but inductor is OK with it, because we are
# cool with strides and everything goes to empty_strided)
@register_decomposition([aten.empty_permuted.default])
def empty_permuted(size, physical_layout, **kwargs):
perm = [0] * len(size)
for p, l in enumerate(physical_layout):
perm[l] = p
return torch.empty([size[l] for l in physical_layout], **kwargs).permute(perm)
@register_decomposition([aten.convolution_backward])
def convolution_backward(
grad_output,
input,
weight,
bias_sizes,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
output_mask,
):
if not output_mask[2] or grad_output.device.type != "cuda":
return NotImplemented
grad_bias = aten.sum(grad_output, [0] + list(range(2, grad_output.dim())))
grad_inp, grad_weight, _ = aten.convolution_backward(
grad_output,
input,
weight,
bias_sizes,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
[output_mask[0], output_mask[1], False],
)
return (grad_inp, grad_weight, grad_bias)
@register_decomposition([aten.log2])
def log2(x):
return torch.log(x) * (1.0 / math.log(2.0))
@register_decomposition([aten.round.decimals])
def round_dec(x, decimals=0):
ten_pow_decimals = 10.0**decimals
return aten.round(x * ten_pow_decimals) * (1.0 / ten_pow_decimals)
@register_decomposition([aten.bmm])
@pw_cast_for_opmath
def bmm(self, batch2):
if config.coordinate_descent_tuning:
if self.shape[1] == 1:
out = (self.unsqueeze(-1) * batch2.unsqueeze(1)).sum(dim=2)
return out
if self.device.type == "cpu":
if self.size(1) == 1 and batch2.size(-1) == 1:
return torch.sum(
self.squeeze(1) * batch2.squeeze(-1), dim=1, keepdim=True
).unsqueeze(1)
return NotImplemented
@register_decomposition([aten.addmm])
@pw_cast_for_opmath
def addmm(self, mat1, mat2, beta=1, alpha=1):
if self.device.type == "cpu":
if mat1.size(0) == 1 and mat2.size(-1) == 1:
out = torch.sum(
mat1.squeeze(0) * mat2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return alpha * out + beta * self
if mat1.size(0) == 1 and mat2.size(0) <= 16 and mat2.size(1) <= 16:
out = (mat1.T * mat2).sum(dim=0, keepdim=True)
return alpha * out + beta * self
return NotImplemented
@register_decomposition([aten.mm])
@pw_cast_for_opmath
def mm(self, input2):
# Our matrix vector multiplies only achieve peak bandwidth with coordinate descent tuning.
# todo: Look into why and fix it (hopefully)
if config.coordinate_descent_tuning:
if self.shape[0] == 1 or input2.shape[1] == 1:
return (self.unsqueeze(2) * input2.unsqueeze(0)).sum(dim=1)
if self.device.type == "cpu":
if (
self.size(-1) == 1
and self.size(0) > 0
and input2.size(0) == 1
and (self.dtype == input2.dtype)
and ((torch.numel(self) + torch.numel(input2)) <= 32)
):
return torch.cat([self[i, :] * input2 for i in range(self.size(0))])
if self.size(0) == 1 and input2.size(-1) == 1:
return torch.sum(
self.squeeze(0) * input2.squeeze(-1), dim=0, keepdim=True
).unsqueeze(0)
return NotImplemented
@register_decomposition([aten.cat.default])
def cat(tensors, dim=0):
def non_empty_tensor(x):
# special case for cat'ing with an empty tensor -
# just drop the 'empty' inputs so they don't confuse the logic below.
return len(x.shape) > 1 or x.shape[0] > 0
filtered_tensors = list(filter(non_empty_tensor, tensors))
if len(filtered_tensors) == 1:
return tensors[0].clone()
elif 1 < len(filtered_tensors) < len(tensors):
# on the first call, when we remove empty tensors, we redispatch recursively
return aten.cat.default(filtered_tensors, dim)
# when no 'filtering' has occurred, we raise to prevent infinite recursion (no more decomposition needed)
return NotImplemented
@register_decomposition([aten.angle])
def angle(x):
if x.is_complex():
return torch.where(
torch.isnan(x.real), float("nan"), torch.atan2(x.imag, x.real)
)
else:
# when x is real number
# if x >= 0, return 0
# if x < 0, return pi
# if x is nan, return nan
ret = torch.where(x < 0, math.pi, 0.0)
nan = torch.where(torch.isnan(x), float("nan"), 0.0)
return ret + nan
@register_decomposition([aten.conj_physical])
def conj_physical(self):
assert not self.is_complex(), "TODO: implement this"
return self
@register_decomposition([aten.lift, aten.detach_])
def lift(self):
return self
@register_decomposition([aten.bernoulli.default])
def bernoulli(self, *, generator=None):
assert generator is None
return torch.rand_like(self, dtype=torch.float32) < self
@register_decomposition([aten.fmin, prims.fmin])
def fmin(self, other):
return torch.where(torch.isnan(other) | (other > self), self, other)
@register_decomposition([aten.fmax, prims.fmax])
def fmax(self, other):
return torch.where(torch.isnan(other) | (other < self), self, other)
@register_decomposition([aten.narrow_copy])
def narrow_copy(self, dim, start, length):
return torch.narrow(self, dim, start, length).clone()
@register_decomposition([aten.expand_copy])
def expand_copy(self, size, *, implicit=False):
return aten.expand(self, size, implicit=implicit).clone()
@register_decomposition([aten.view_copy.default])
def view_copy_default(self, size):
return aten.view(self, size).clone()
@register_decomposition([aten.view_copy.dtype])
def view_copy_dtype(self, dtype):
return self.to(dtype).clone()
def get_like_layout(
tensor: torch.Tensor, memory_format: Optional[torch.memory_format]
) -> torch.memory_format:
# TODO: _to_copy tensor to stride permutation
if memory_format in (torch.preserve_format, None):
return utils.suggest_memory_format(tensor)
else:
return memory_format
@register_decomposition(aten.rand_like)
def rand_like(self, *, dtype=None, device=None, memory_format=None, **kwargs):
return torch.rand(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randn_like)
def randn_like(self, *, dtype=None, device=None, memory_format=None, **kwargs):
return torch.randn(
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.full_like)
def full_like(
self,
fill_value,
*,
dtype=None,
layout=None,
device=None,
pin_memory=False,
requires_grad=False,
memory_format=torch.preserve_format,
):
return torch.full(
[*self.size()],
fill_value,
dtype=dtype or self.dtype,
layout=layout or self.layout,
device=device or self.device,
requires_grad=requires_grad,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.default)
def randint_like(self, high, *, dtype=None, device=None, memory_format=None, **kwargs):
return aten.randint.low(
0,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint_like.low_dtype)
def randint_like_low(
self, low, high, *, dtype=None, device=None, memory_format=None, **kwargs
):
return aten.randint.low(
low,
high,
[*self.size()],
dtype=dtype or self.dtype,
device=device or self.device,
**kwargs,
).to(memory_format=get_like_layout(self, memory_format))
@register_decomposition(aten.randint.default)
def randint(high, size, **kwargs):
return aten.randint.low(0, high, size, **kwargs)
# The difference between quantize_per_tensor.default and quantize_per_tensor.tensor is
# scale and zero_point is scalar or scalar tensor
@register_decomposition(quantized_decomposed.quantize_per_tensor.default)
def quantize_per_tensor_default_decomp_impl(
input: torch.Tensor,
scale: float,
zero_point: int,
quant_min: int,
quant_max: int,
dtype: torch.dtype,
) -> torch.Tensor:
inv_scale = 1.0 / scale
return torch.clamp(
torch.round(input * inv_scale) + zero_point, quant_min, quant_max
).to(dtype)
# The difference between dequantize_per_tensor.default and dequantize_per_tensor.tensor is
# scale and zero_point is scalar or scalar tensor
@register_decomposition(quantized_decomposed.dequantize_per_tensor.default)
def dequantize_per_tensor_default_decomp_impl(
input: torch.Tensor,
scale: float,
zero_point: int,
quant_min: int,
quant_max: int,
dtype: torch.dtype,
) -> torch.Tensor:
return (input.to(torch.float32) - zero_point) * scale
@register_decomposition(quantized_decomposed.quantize_per_tensor.tensor)
def quantize_per_tensor_tensor_decomp_impl(
input: torch.Tensor,
scale: torch.Tensor,
zero_point: torch.Tensor,
quant_min: int,
quant_max: int,
dtype: torch.dtype,
) -> torch.Tensor:
inv_scale = 1.0 / scale
return torch.clamp(
torch.round(input * inv_scale) + zero_point, quant_min, quant_max
).to(dtype)
@register_decomposition(quantized_decomposed.dequantize_per_tensor.tensor)
def dequantize_per_tensor_tensor_decomp_impl(
input: torch.Tensor,
scale: torch.Tensor,
zero_point: torch.Tensor,
quant_min: int,
quant_max: int,
dtype: torch.dtype,
) -> torch.Tensor:
return (input.to(torch.float32) - zero_point) * scale
@register_decomposition(torch.ops.quantized.embedding_bag_byte_unpack)
def q_embedding_bag_byte_unpack_decomp(packed):
def bitcast_u8_to_f32(u8):
x, y, z, w = (u8[..., n].to(torch.int32) for n in (0, 1, 2, 3))
return (x + (y << 8) + (z << 16) + (w << 24)).view(torch.float32)[..., None]
scales = bitcast_u8_to_f32(packed[..., -8:-4])
offsets = bitcast_u8_to_f32(packed[..., -4:])
return packed[..., :-8].to(torch.float32) * scales + offsets
@register_decomposition([aten.grid_sampler_2d])
@pw_cast_for_opmath
def grid_sampler_2d(
a: torch.Tensor,
grid: torch.Tensor,
interpolation_mode: int = 0,
padding_mode: int = 0,
align_corners: bool = False,
) -> torch.Tensor:
# We do not expand the grid (_expand_grid=False) on cpu for performance reasons
# Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
# and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
# However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
# Thus we apply this hack to not expand the grid for this case.
_expand_grid = not (
a.device == torch.device("cpu")
and interpolation_mode == 0
and a.is_contiguous(memory_format=torch.contiguous_format)
)
output = decomp_grid_sampler_2d(
a,
grid=grid,
interpolation_mode=interpolation_mode,
padding_mode=padding_mode,
align_corners=align_corners,
_expand_grid=_expand_grid,
)
return output
@register_decomposition(aten._foreach_addcmul.Scalar)
def _foreach_addcmul_scalar(self, left_tensors, right_tensors, scalar=1):
return aten._foreach_add.List(
self, aten._foreach_mul.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_addcdiv.Scalar)
def _foreach_addcdiv_scalar(self, left_tensors, right_tensors, scalar=1):
return aten._foreach_add.List(
self, aten._foreach_div.List(left_tensors, right_tensors), alpha=scalar
)
@register_decomposition(aten._foreach_lerp.Scalar)
def _foreach_lerp_scalar(start_tensors, end_tensors, weight):
return aten._foreach_add.List(
start_tensors,
aten._foreach_mul.Scalar(
aten._foreach_sub.List(end_tensors, start_tensors), weight
),
)
@aten.miopen_batch_norm.default.py_impl(torch._C.DispatchKey.Autograd)
@register_decomposition(aten.miopen_batch_norm)
def miopen_batch_norm(
input: torch.Tensor,
weight: torch.Tensor,
bias: typing.Optional[torch.Tensor],
running_mean: typing.Optional[torch.Tensor],
running_var: typing.Optional[torch.Tensor],
training: bool,
exponential_average_factor: float,
epsilon: float,
):
a, b, c = aten.native_batch_norm(
input,
weight,
bias,
running_mean,
running_var,
training,
exponential_average_factor,
epsilon,
)
if training:
return (a, b, c)
return (
a,
weight.new_zeros((0,)),
weight.new_zeros((0,)),
)
@functools.lru_cache(None)
def fast_random_decomps():
return {**decompositions, **extra_random_decomps}
def select_decomp_table():
"""decomps can change based on config"""
if config.fallback_random:
return decompositions
return fast_random_decomps()
@register_decomposition(aten.masked_scatter)
def masked_scatter(self, mask, source):
if self.device.type == "cuda":
# This two-step algorithm is the same as eager CUDA, for eager CPU we
# use a 1-shot serial iteration.
self, mask = aten.broadcast_tensors([self, mask])
source_idx = mask.reshape(-1).cumsum(0) - 1
return inductor_prims.masked_scatter_with_index(self, mask, source_idx, source)
return NotImplemented