forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_image_db.cc
279 lines (242 loc) · 7.56 KB
/
make_image_db.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This script converts an image dataset to a database.
//
// FLAGS_input_folder is the root folder that holds all the images
//
// FLAGS_list_file is the path to a file containing a list of files
// and their labels, as follows:
//
// subfolder1/file1.JPEG 7
// subfolder1/file2.JPEG 7
// subfolder2/file1.JPEG 8
// ...
//
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <fstream>
#include <queue>
#include <random>
#include <string>
#include <thread>
#include "caffe2/core/common.h"
#include "caffe2/core/db.h"
#include "caffe2/core/init.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/core/logging.h"
C10_DEFINE_bool(
shuffle,
false,
"Randomly shuffle the order of images and their labels");
C10_DEFINE_string(input_folder, "", "The input image file name.");
C10_DEFINE_string(
list_file,
"",
"The text file containing the list of images.");
C10_DEFINE_string(output_db_name, "", "The output training leveldb name.");
C10_DEFINE_string(db, "leveldb", "The db type.");
C10_DEFINE_bool(
raw,
false,
"If set, we pre-read the images and store the raw buffer.");
C10_DEFINE_bool(color, true, "If set, load images in color.");
C10_DEFINE_int(
scale,
256,
"If FLAGS_raw is set, scale the shorter edge to the given value.");
C10_DEFINE_bool(warp, false, "If warp is set, warp the images to square.");
C10_DEFINE_int(
num_threads,
-1,
"Number of image parsing and conversion threads.");
namespace caffe2 {
class Converter {
public:
explicit Converter() {
data_ = protos_.add_protos();
label_ = protos_.add_protos();
if (FLAGS_raw) {
data_->set_data_type(TensorProto::BYTE);
data_->add_dims(0);
data_->add_dims(0);
if (FLAGS_color) {
data_->add_dims(3);
}
} else {
data_->set_data_type(TensorProto::STRING);
data_->add_dims(1);
data_->add_string_data("");
}
label_->set_data_type(TensorProto::INT32);
label_->add_dims(1);
label_->add_int32_data(0);
}
~Converter() {
if (thread_.joinable()) {
thread_.join();
}
}
void queue(const std::pair<std::string, int>& pair) {
in_.push(pair);
}
void start() {
thread_ = std::thread(&Converter::run, this);
}
std::string get() {
std::unique_lock<std::mutex> lock(mutex_);
while (out_.empty()) {
cv_.wait(lock);
}
auto value = out_.front();
out_.pop();
cv_.notify_one();
return value;
}
void run() {
const auto& input_folder = FLAGS_input_folder;
std::unique_lock<std::mutex> lock(mutex_);
std::string value;
while (!in_.empty()) {
auto pair = in_.front();
in_.pop();
lock.unlock();
label_->set_int32_data(0, pair.second);
// Add raw file contents to DB if !raw
if (!FLAGS_raw) {
std::ifstream image_file_stream(input_folder + pair.first);
if (!image_file_stream) {
LOG(ERROR) << "Cannot open " << input_folder << pair.first
<< ". Skipping.";
} else {
data_->mutable_string_data(0)->assign(
std::istreambuf_iterator<char>(image_file_stream),
std::istreambuf_iterator<char>());
}
} else {
// Load image
cv::Mat img = cv::imread(
input_folder + pair.first,
FLAGS_color ? cv::IMREAD_COLOR : cv::IMREAD_GRAYSCALE);
// Resize image
cv::Mat resized_img;
int scaled_width, scaled_height;
if (FLAGS_warp) {
scaled_width = FLAGS_scale;
scaled_height = FLAGS_scale;
} else if (img.rows > img.cols) {
scaled_width = FLAGS_scale;
scaled_height = static_cast<float>(img.rows) * FLAGS_scale / img.cols;
} else {
scaled_height = FLAGS_scale;
scaled_width = static_cast<float>(img.cols) * FLAGS_scale / img.rows;
}
cv::resize(
img,
resized_img,
cv::Size(scaled_width, scaled_height),
0,
0,
cv::INTER_LINEAR);
data_->set_dims(0, scaled_height);
data_->set_dims(1, scaled_width);
// Assert we don't have to deal with alignment
DCHECK(resized_img.isContinuous());
auto nbytes = resized_img.total() * resized_img.elemSize();
data_->set_byte_data(resized_img.ptr(), nbytes);
}
protos_.SerializeToString(&value);
// Add serialized proto to out queue or wait if it is not empty
lock.lock();
while (!out_.empty()) {
cv_.wait(lock);
}
out_.push(value);
cv_.notify_one();
}
}
protected:
TensorProtos protos_;
TensorProto* data_;
TensorProto* label_;
std::queue<std::pair<std::string, int>> in_;
std::queue<std::string> out_;
std::mutex mutex_;
std::condition_variable cv_;
std::thread thread_;
};
void ConvertImageDataset(
const string& input_folder,
const string& list_filename,
const string& output_db_name,
const bool /*shuffle*/) {
std::ifstream list_file(list_filename);
std::vector<std::pair<std::string, int> > lines;
std::string filename;
int file_label;
while (list_file >> filename >> file_label) {
lines.push_back(std::make_pair(filename, file_label));
}
if (FLAGS_shuffle) {
LOG(INFO) << "Shuffling data";
std::shuffle(lines.begin(), lines.end(), std::default_random_engine(1701));
}
auto num_threads = FLAGS_num_threads;
if (num_threads < 1) {
num_threads = std::thread::hardware_concurrency();
}
LOG(INFO) << "Processing " << lines.size() << " images...";
LOG(INFO) << "Opening DB " << output_db_name;
auto db = db::CreateDB(FLAGS_db, output_db_name, db::NEW);
auto transaction = db->NewTransaction();
LOG(INFO) << "Using " << num_threads << " processing threads...";
std::vector<Converter> converters(num_threads);
// Queue entries across converters
for (auto i = 0; i < lines.size(); i++) {
converters[i % converters.size()].queue(lines[i]);
}
// Start all converters
for (auto& converter : converters) {
converter.start();
}
constexpr auto key_max_length = 256;
char key_cstr[key_max_length];
int count = 0;
for (auto i = 0; i < lines.size(); i++) {
// Get serialized proto for this entry
auto value = converters[i % converters.size()].get();
// Synthesize key for this entry
auto key_len = snprintf(
key_cstr, sizeof(key_cstr), "%08d_%s", i, lines[i].first.c_str());
TORCH_DCHECK_LE(key_len, sizeof(key_cstr));
// Put in db
transaction->Put(string(key_cstr), std::move(value));
if (++count % 1000 == 0) {
// Commit the current writes.
transaction->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
}
// Commit final transaction
transaction->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
} // namespace caffe2
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
caffe2::ConvertImageDataset(
FLAGS_input_folder, FLAGS_list_file, FLAGS_output_db_name, FLAGS_shuffle);
return 0;
}