forked from dgaddy/silent_speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheeg_recognition_model.py
296 lines (265 loc) · 9.92 KB
/
eeg_recognition_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import sys
import pdb
import torch
import os
import logging
import tqdm
import jiwer
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from data_utils import decollate_tensor, combine_fixed_length, save_model
from ctcdecode import CTCBeamDecoder
from read_eeg import EEGDataset, load_datasets
from eeg_architecture import EEGModel
from config import subjects
import gc
import json
import wandb
import pickle
from pathlib import Path
from absl import flags
import pdb
FLAGS = flags.FLAGS
flags.DEFINE_string("output_directory", "output",
"where to save models and outputs")
flags.DEFINE_boolean("debug", False, "debug")
flags.DEFINE_string("start_training_from", None,
"start training from this model")
flags.DEFINE_float("l2", 0, "weight decay")
flags.DEFINE_integer("epochs", 100, "number of training epochs")
flags.DEFINE_integer("batch_size", 8, "training batch size")
flags.DEFINE_float("learning_rate", 3e-4, "learning rate")
flags.DEFINE_integer("learning_rate_warmup", 1000, "steps of linear warmup")
flags.DEFINE_integer("learning_rate_patience", 5,
"learning rate decay patience")
flags.DEFINE_string("evaluate_saved", None,
"run evaluation on given model file")
flags.DEFINE_string("wandb_name", "word_cls", "wandb run name")
def train_model(trainset, devset, device):
torch.cuda.empty_cache()
gc.collect()
n_epochs = FLAGS.epochs
dataloader = torch.utils.data.DataLoader(
dataset=trainset,
pin_memory=(device == "cuda"),
num_workers=0,
collate_fn=trainset.collate_raw,
batch_size=FLAGS.batch_size,
)
chars = list(trainset.text_transform.chars.keys()) + ["_"]
blank_id = n_chars = len(chars) - 1
decoder = CTCBeamDecoder(
chars,
blank_id=blank_id,
log_probs_input=True,
model_path="lm.binary",
alpha=1.5,
beta=1.85,
beam_width=30,
)
model = EEGModel(devset.num_features, n_chars + 1).to(device)
wandb.login(key="1b4a08dec829dd8f2d99985b647c44f28c0e2b23", relogin=True)
run = wandb.init(
name=FLAGS.wandb_name,
reinit=True,
project="eeg-alice",
)
expt_root = run.dir
os.makedirs(expt_root, exist_ok=True)
model_arch = str(model)
model_path = os.path.join(expt_root, "model_arch.txt")
arch_file = open(model_path, "w")
file_write = arch_file.write(model_arch)
arch_file.close()
wandb.watch(model, log="all")
if FLAGS.start_training_from is not None:
state_dict = torch.load(
FLAGS.start_training_from, map_location=torch.device(device)
)
model.load_state_dict(state_dict, strict=False)
optim = torch.optim.AdamW(
model.parameters(), lr=FLAGS.learning_rate, weight_decay=FLAGS.l2
)
# lr_sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=20)
lr_sched = torch.optim.lr_scheduler.MultiStepLR(
optim, milestones=[125, 150, 175], gamma=0.5
)
def set_lr(new_lr):
for param_group in optim.param_groups:
param_group["lr"] = new_lr
target_lr = FLAGS.learning_rate
def schedule_lr(iteration):
iteration = iteration + 1
if iteration <= FLAGS.learning_rate_warmup:
set_lr(iteration * target_lr / FLAGS.learning_rate_warmup)
optim.zero_grad()
for epoch_idx in range(n_epochs):
losses = []
wers = []
curr_lr = float(optim.param_groups[0]["lr"])
batch_idx = 0
results = []
for example in tqdm.tqdm(dataloader, "Train step", disable=None):
schedule_lr(batch_idx)
X = combine_fixed_length(
example["eeg_raw"], 5000).float().to(device)
pred = model(X)
pred = F.log_softmax(pred, 2)
pred_lengths = [l // 4 for l in example["lengths"]]
pred = nn.utils.rnn.pad_sequence(
decollate_tensor(pred, pred_lengths),
batch_first=False,
padding_value=n_chars - 1,
) # seq first, as required by ctc
y = nn.utils.rnn.pad_sequence(
example["text_int"],
batch_first=True,
padding_value=n_chars - 1,
).to(device)
loss = F.ctc_loss(
pred, y, pred_lengths, example["text_int_lengths"], blank=n_chars
)
losses.append(loss.item())
loss.backward()
pred = pred.permute(1, 0, 2)
beam_results, _, _, out_lens = decoder.decode(
# pred should be B x T x C
pred, seq_lens=torch.tensor(pred_lengths)
)
# Calculate WER for each batch
references = []
predictions = []
for i in range(len(y)):
target_text = trainset.text_transform.int_to_text(
y[i].cpu().numpy())
# target_text = target_text.replace(trainset.text_transform.pad_token, "")
references.append(target_text.strip())
if i < len(beam_results):
pred_int = beam_results[i, 0, : out_lens[i, 0]].tolist()
try:
pred_text = trainset.text_transform.int_to_text(
pred_int)
except:
print(f"!!!ERROR!!! batch idx: {batch_idx}, i: {i}")
exit()
predictions.append(pred_text.strip())
results.append(
{"original": target_text, "predicted": pred_text})
wer = jiwer.wer(references, predictions)
wers.append(wer)
if (batch_idx + 1) % 2 == 0:
optim.step()
optim.zero_grad()
batch_idx += 1
torch.cuda.empty_cache()
train_loss = np.mean(losses)
train_wer = np.mean(wers)
val = test(model, devset, device, epoch_idx)
lr_sched.step()
logging.info(
f"finished epoch {epoch_idx+1} - training loss: {train_loss:.4f} training WER:{train_wer*100:.2f} validation WER: {val*100:.2f} lr: {curr_lr}"
)
wandb.log(
{
"train_loss": train_loss,
"train_wer": train_wer,
"val_wer": val,
"lr": curr_lr,
}
)
save_model(
model,
optimizer=optim,
scheduler=lr_sched,
metric=("WER", val),
epoch=epoch_idx,
path=os.path.join(FLAGS.output_directory, "model.pt"),
)
if epoch_idx % 5 == 0:
output_json_dir = os.path.join(FLAGS.output_directory, "text")
os.makedirs(output_json_dir, exist_ok=True)
output_json_path = os.path.join(
output_json_dir, f"epoch_{epoch_idx}_results.json"
)
with open(output_json_path, "w") as f:
json.dump(results, f, indent=4)
run.finish()
return model
def test(model, testset, device, epoch_idx=0):
model.eval()
chars = list(testset.text_transform.chars.keys()) + ["_"]
blank_id = len(chars) - 1
decoder = CTCBeamDecoder(
chars,
blank_id=blank_id,
log_probs_input=True,
model_path="lm.binary",
alpha=1.5,
beta=1.85,
beam_width=30,
)
dataloader = torch.utils.data.DataLoader(
testset, batch_size=1 # , collate_fn=EEGDataset.collate_raw, num_workers=0
)
references = []
predictions = []
results = []
with torch.no_grad():
for example in tqdm.tqdm(dataloader, "Evaluate", disable=None):
X = example["eeg_raw"].float().to(device)
pred = F.log_softmax(model(X), -1)
# pred_lengths = [l // 4 for l in example["lengths"]]
beam_results, _, _, out_lens = decoder.decode(
pred # , seq_lens=torch.tensor(pred_lengths)
)
pred_int = beam_results[0, 0, : out_lens[0, 0]].tolist()
pred_text = testset.text_transform.int_to_text(pred_int)
target_text = testset.text_transform.clean_text(
example["label"][0])
references.append(target_text)
predictions.append(pred_text)
results.append({"original": target_text, "predicted": pred_text})
if epoch_idx % 5 == 0:
output_json_dir = os.path.join(FLAGS.output_directory, "text_val")
os.makedirs(output_json_dir, exist_ok=True)
output_json_path = os.path.join(
output_json_dir, f"epoch_{epoch_idx}_results.json"
)
with open(output_json_path, "w") as f:
json.dump(results, f, indent=4)
model.train()
return jiwer.wer(references, predictions)
def evaluate_saved():
device = "cuda" if torch.cuda.is_available() and not FLAGS.debug else "cpu"
testset = EEGDataset(test=True)
n_chars = len(testset.text_transform.chars)
model = EEGModel(testset.num_features, n_chars + 1).to(device)
model.load_state_dict(
torch.load(FLAGS.evaluate_saved, map_location=torch.device(device))
)
print("WER:", test(model, testset, device))
def main():
os.makedirs(FLAGS.output_directory, exist_ok=True)
logging.basicConfig(
handlers=[
logging.FileHandler(os.path.join(
FLAGS.output_directory, "log.txt"), "w"),
logging.StreamHandler(),
],
level=logging.INFO,
format="%(message)s",
)
logging.info(sys.argv)
device = "cuda" if torch.cuda.is_available() and not FLAGS.debug else "cpu"
print("device:", device)
trainset, devset, testset = load_datasets(subjects, dataset_type="seq2seq")
model = train_model(trainset, devset, device)
test_wer = test(model, testset, device)
logging.info("Test WER: %f", test_wer)
if __name__ == "__main__":
FLAGS(sys.argv)
if FLAGS.evaluate_saved is not None:
evaluate_saved()
else:
main()