forked from JumpingYang001/webrtc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquality_threshold_unittest.cc
133 lines (109 loc) · 4.14 KB
/
quality_threshold_unittest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/quality_threshold.h"
#include "test/gtest.h"
namespace webrtc {
TEST(QualityThresholdTest, BackAndForth) {
const int kLowThreshold = 0;
const int kHighThreshold = 1;
const float kFraction = 0.75f;
const int kMaxMeasurements = 10;
QualityThreshold thresh(kLowThreshold, kHighThreshold, kFraction,
kMaxMeasurements);
const int kNeededMeasurements =
static_cast<int>(kFraction * kMaxMeasurements + 1);
for (int i = 0; i < kNeededMeasurements; ++i) {
EXPECT_FALSE(thresh.IsHigh());
thresh.AddMeasurement(kLowThreshold);
}
ASSERT_TRUE(thresh.IsHigh());
for (int i = 0; i < kNeededMeasurements; ++i) {
EXPECT_FALSE(*thresh.IsHigh());
thresh.AddMeasurement(kHighThreshold);
}
EXPECT_TRUE(*thresh.IsHigh());
for (int i = 0; i < kNeededMeasurements; ++i) {
EXPECT_TRUE(*thresh.IsHigh());
thresh.AddMeasurement(kLowThreshold);
}
EXPECT_FALSE(*thresh.IsHigh());
}
TEST(QualityThresholdTest, Variance) {
const int kLowThreshold = 0;
const int kHighThreshold = 1;
const float kFraction = 0.8f;
const int kMaxMeasurements = 10;
const double kMaxError = 0.01;
// Previously randomly generated values...
int values[] = {51, 79, 80, 56, 19, 20, 48, 57, 48, 25, 2, 25, 38, 37, 25};
// ...with precomputed variances.
double variances[] = {476.9, 687.6, 552, 336.4, 278.767, 265.167};
QualityThreshold thresh(kLowThreshold, kHighThreshold, kFraction,
kMaxMeasurements);
for (int i = 0; i < kMaxMeasurements; ++i) {
EXPECT_FALSE(thresh.CalculateVariance());
thresh.AddMeasurement(values[i]);
}
ASSERT_TRUE(thresh.CalculateVariance());
EXPECT_NEAR(variances[0], *thresh.CalculateVariance(), kMaxError);
for (unsigned int i = 1; i < sizeof(variances) / sizeof(double); ++i) {
thresh.AddMeasurement(values[i + kMaxMeasurements - 1]);
EXPECT_NEAR(variances[i], *thresh.CalculateVariance(), kMaxError);
}
for (int i = 0; i < kMaxMeasurements; ++i) {
thresh.AddMeasurement(42);
}
EXPECT_NEAR(0, *thresh.CalculateVariance(), kMaxError);
}
TEST(QualityThresholdTest, BetweenThresholds) {
const int kLowThreshold = 0;
const int kHighThreshold = 2;
const float kFraction = 0.6f;
const int kMaxMeasurements = 10;
const int kBetweenThresholds = (kLowThreshold + kHighThreshold) / 2;
QualityThreshold thresh(kLowThreshold, kHighThreshold, kFraction,
kMaxMeasurements);
for (int i = 0; i < 2 * kMaxMeasurements; ++i) {
EXPECT_FALSE(thresh.IsHigh());
thresh.AddMeasurement(kBetweenThresholds);
}
EXPECT_FALSE(thresh.IsHigh());
}
TEST(QualityThresholdTest, FractionHigh) {
const int kLowThreshold = 0;
const int kHighThreshold = 2;
const float kFraction = 0.75f;
const int kMaxMeasurements = 10;
const int kBetweenThresholds = (kLowThreshold + kHighThreshold) / 2;
const int kNeededMeasurements =
static_cast<int>(kFraction * kMaxMeasurements + 1);
QualityThreshold thresh(kLowThreshold, kHighThreshold, kFraction,
kMaxMeasurements);
for (int i = 0; i < kMaxMeasurements; ++i) {
EXPECT_FALSE(thresh.FractionHigh(1));
thresh.AddMeasurement(kBetweenThresholds);
}
for (int i = 0; i < kNeededMeasurements; i++) {
EXPECT_FALSE(thresh.FractionHigh(1));
thresh.AddMeasurement(kHighThreshold);
}
EXPECT_FALSE(thresh.FractionHigh(2));
ASSERT_TRUE(thresh.FractionHigh(1));
EXPECT_NEAR(*thresh.FractionHigh(1), 1, 0.001);
for (int i = 0; i < kNeededMeasurements; i++) {
EXPECT_NEAR(*thresh.FractionHigh(1), 1, 0.001);
thresh.AddMeasurement(kLowThreshold);
}
EXPECT_NEAR(
*thresh.FractionHigh(1),
static_cast<double>(kNeededMeasurements) / (kNeededMeasurements + 1),
0.001);
}
} // namespace webrtc