-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlower_bound.lyx
348 lines (260 loc) · 7.03 KB
/
lower_bound.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\textclass optbook
\end_header
\begin_body
\begin_layout Section
Lower Bounds
\begin_inset CommandInset label
LatexCommand label
name "sec:Lower-Bounds"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
checked calculations
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In this chapter, we have discussed a few cutting plane methods.
In particular, we showed that
\begin_inset Formula $O(\min(n,\sqrt{\frac{L}{\mu}})\log(\frac{1}{\epsilon}))$
\end_inset
gradient computations suffice.
We conclude this section by showing that
\begin_inset Formula $\min(n,\sqrt{\frac{L}{\mu}})$
\end_inset
is in fact optimal among
\begin_inset Quotes eld
\end_inset
gradient-based
\begin_inset Quotes erd
\end_inset
methods.
For convenience the reader may consider
\begin_inset Formula $\mu=1$
\end_inset
and
\begin_inset Formula $L=\kappa$
\end_inset
.
\end_layout
\begin_layout Theorem
Fix any
\begin_inset Formula $L\geq\mu>0$
\end_inset
.
Consider the function
\begin_inset Formula
\begin{equation}
f(x)=-\frac{L-\mu}{4}x_{1}+\frac{L-\mu}{8}\sum_{i=1}^{n-1}(x_{i}-x_{i+1})^{2}+\frac{L-\mu}{8}x_{1}^{2}+\frac{\mu}{2}\sum_{i=1}^{n}x_{i}^{2}+\frac{\sqrt{L\mu}-\mu}{4}x_{n}^{2}\label{eq:worst_function}
\end{equation}
\end_inset
\end_layout
\begin_layout Theorem
which satisfies
\begin_inset Formula $\mu\cdot I\preceq\nabla^{2}f(x)\preceq L\cdot I$
\end_inset
.
Assume that our algorithm satisfies
\begin_inset Formula $x^{(k)}\in\mathrm{span}(x^{(0)},\nabla f(x^{(0)}),\cdots,\nabla f(x^{(k-1)}))$
\end_inset
with the initial point
\begin_inset Formula $x^{(0)}=0$
\end_inset
.
Then, for
\begin_inset Formula $k<n$
\end_inset
,
\begin_inset Formula
\[
f(x^{(k)})-\min_{x}f(x)\geq(\frac{\mu}{L})^{3/2}(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2k}(f(x^{(0)})-\min_{x}f(x)).
\]
\end_inset
\end_layout
\begin_layout Proof
First, we check the strong convexity and smoothness.
Note that
\begin_inset Formula $f(x)=-x_{1}+\frac{1}{2}x^{\top}Ax$
\end_inset
for some matrix
\begin_inset Formula $A$
\end_inset
.
Hence,
\begin_inset Formula $\nabla^{2}f(x)=A$
\end_inset
.
Hence, we have
\begin_inset Formula
\[
\theta^{\top}\nabla^{2}f(x)\theta=\frac{L-\mu}{4}\sum_{i=1}^{n-1}(\theta_{i}-\theta_{i+1})^{2}+\frac{L-\mu}{4}\theta_{1}^{2}+\mu\sum_{i=1}^{n}\theta_{i}^{2}+\frac{\sqrt{L\mu}-\mu}{2}\theta_{n}^{2}
\]
\end_inset
For the upper bound
\begin_inset Formula $\nabla^{2}f(x)\preceq L\cdot I$
\end_inset
, we note that
\begin_inset Formula
\begin{align*}
\theta^{\top}\nabla^{2}f(x)\theta & \leq\frac{L-\mu}{4}\sum_{i=1}^{n-1}(2\theta_{i}^{2}+2\theta_{i+1}^{2})+\frac{L-\mu}{4}\theta_{1}^{2}+\mu\sum_{i=1}^{n}\theta_{i}^{2}+(\frac{\sqrt{L\mu}-\mu}{2})\theta_{n}^{2}\\
& \leq(L-\mu)\sum_{i=1}^{n}\theta_{i}^{2}+\mu\sum_{i=1}^{n}\theta_{i}^{2}\\
& =L\sum_{i=1}^{n}\theta_{i}^{2}.
\end{align*}
\end_inset
For the lower bound
\begin_inset Formula $\nabla^{2}f(x)\succeq\mu\cdot I$
\end_inset
, we note that
\begin_inset Formula
\[
\theta^{\top}\nabla^{2}f(x)\theta\geq\mu\sum_{i=1}^{n}\theta_{i}^{2}.
\]
\end_inset
\end_layout
\begin_layout Proof
To lower bound the error, we note that the gradient at
\begin_inset Formula $x^{(0)}$
\end_inset
is of the form
\begin_inset Formula $(?,0,0,0,\cdots)$
\end_inset
and hence by the assumption
\begin_inset Formula $x^{(1)}=(?,0,0,0,\cdots)$
\end_inset
and
\begin_inset Formula $\nabla f(x^{(1)})=(?,?,0,0,\cdots)$
\end_inset
.
By induction, only the first
\begin_inset Formula $k$
\end_inset
coordinates of
\begin_inset Formula $x^{(k)}$
\end_inset
are non-zero.
\end_layout
\begin_layout Proof
Now, we compute the minimizer of
\begin_inset Formula $f(x)$
\end_inset
.
Let
\begin_inset Formula $x^{*}$
\end_inset
be the minimizer of
\begin_inset Formula $f(x)$
\end_inset
.
By the optimality condition, we have that
\begin_inset Formula
\begin{align*}
-\frac{L-\mu}{4}+\frac{L-\mu}{4}(x_{1}^{*}-x_{2}^{*})+\frac{L-\mu}{4}x_{1}^{*}+\mu x_{1}^{*} & =0,\\
\frac{L-\mu}{4}(x_{i}^{*}-x_{i-1}^{*})+\frac{L-\mu}{4}(x_{i}^{*}-x_{i+1}^{*})+\mu x_{i}^{*} & =0,\text{ for }i\in\{2,3,\cdots,n-1\}\\
\frac{L-\mu}{4}(x_{n}^{*}-x_{n-1}^{*})+\frac{\sqrt{L\mu}+\mu}{2}x_{n}^{*} & =0.
\end{align*}
\end_inset
By a direct substitution, we have that
\begin_inset Formula $x_{i}^{*}=(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{i}$
\end_inset
is a solution of the above equation.
Now, we note that
\begin_inset Formula
\begin{align*}
\|x^{(k)}-x^{*}\|_{2}^{2} & \geq\sum_{i=k+1}^{n}(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2i}\geq(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2(k+1)}
\end{align*}
\end_inset
and that
\begin_inset Formula
\[
\|x^{(0)}-x^{*}\|_{2}^{2}\leq\sum_{i=1}^{\infty}(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2i}=(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2}\frac{\sqrt{L/\mu}+1}{2}.
\]
\end_inset
Now, by smoothness and by the strong convexity of
\begin_inset Formula $f$
\end_inset
, we have
\begin_inset Formula
\[
\frac{f(x^{(k)})-f(x^{*})}{f(x^{(0)})-f(x^{*})}\geq\frac{\mu}{L}\cdot\frac{\|x^{(k)}-x^{*}\|_{2}^{2}}{\|x^{(0)}-x^{*}\|_{2}^{2}}\geq(\frac{\mu}{L})^{3/2}(\frac{\sqrt{L/\mu}-1}{\sqrt{L/\mu}+1})^{2k}.
\]
\end_inset
\end_layout
\begin_layout Standard
Note that this
\begin_inset Quotes eld
\end_inset
worst
\begin_inset Quotes erd
\end_inset
function naturally appears in many problems.
So, it is a problem we need to address.
In some sense, the proof points out a common issue of any algorithm which
only uses gradient information.
Given any convex function, we construct the dependence graph
\begin_inset Formula $G$
\end_inset
on the set of variables
\begin_inset Formula $x_{i}$
\end_inset
by connecting
\begin_inset Formula $x_{i}$
\end_inset
to
\begin_inset Formula $x_{j}$
\end_inset
if
\begin_inset Formula $\nabla f(x)_{i}$
\end_inset
depends on
\begin_inset Formula $x_{j}$
\end_inset
or
\begin_inset Formula $\nabla f(x)_{j}$
\end_inset
depends on
\begin_inset Formula $x_{i}$
\end_inset
(given all other variables).
Note that the dependence graph
\begin_inset Formula $G$
\end_inset
of the worst function is simply a
\begin_inset Formula $n$
\end_inset
vertex path, whose diameter is
\begin_inset Formula $n-1$
\end_inset
.
Also, note that gradient descent can only transmit information from one
vertex to another in each iteration.
Therefore, it takes at least
\begin_inset Formula $\Omega(\mathrm{diameter})$
\end_inset
time to solve the problem unless we know the solution is sparse (when
\begin_inset Formula $L/\mu$
\end_inset
is small).
However, we note that this is not a lower bound for all algorithms.
\end_layout
\begin_layout Standard
The problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:worst_function"
\end_inset
) belongs to a general class of functions called Laplacian systems and it
can be solved in nearly linear time using spectral graph theory.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO: add citations.
\end_layout
\end_inset
\end_layout
\end_body
\end_document