forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_continuous_time_system.cc
66 lines (54 loc) · 2.08 KB
/
simple_continuous_time_system.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// Simple Continuous Time System Example
//
// This is meant to be a sort of "hello world" example for the
// drake::system classes. It defines a very simple continuous time system,
// simulates it from a given initial condition, and plots the result.
#include "drake/common/unused.h"
#include "drake/systems/analysis/simulator.h"
#include "drake/systems/framework/vector_system.h"
// Simple Continuous Time System
// xdot = -x + x^3
// y = x
class SimpleContinuousTimeSystem : public drake::systems::VectorSystem<double> {
public:
SimpleContinuousTimeSystem()
: drake::systems::VectorSystem<double>(0, // Zero inputs.
1) { // One output.
this->DeclareContinuousState(1); // One state variable.
}
private:
// xdot = -x + x^3
virtual void DoCalcVectorTimeDerivatives(
const drake::systems::Context<double>& context,
const Eigen::VectorBlock<const Eigen::VectorXd>& input,
const Eigen::VectorBlock<const Eigen::VectorXd>& state,
Eigen::VectorBlock<Eigen::VectorXd>* derivatives) const {
drake::unused(context, input);
(*derivatives)(0) = -state(0) + std::pow(state(0), 3.0);
}
// y = x
virtual void DoCalcVectorOutput(
const drake::systems::Context<double>& context,
const Eigen::VectorBlock<const Eigen::VectorXd>& input,
const Eigen::VectorBlock<const Eigen::VectorXd>& state,
Eigen::VectorBlock<Eigen::VectorXd>* output) const {
drake::unused(context, input);
*output = state;
}
};
int main() {
// Create the simple system.
SimpleContinuousTimeSystem system;
// Create the simulator.
drake::systems::Simulator<double> simulator(system);
// Set the initial conditions x(0).
drake::systems::ContinuousState<double>& state =
simulator.get_mutable_context().get_mutable_continuous_state();
state[0] = 0.9;
// Simulate for 10 seconds.
simulator.StepTo(10);
// Make sure the simulation converges to the stable fixed point at x=0.
DRAKE_DEMAND(state[0] < 1.0e-4);
// TODO(russt): make a plot of the resulting trajectory.
return 0;
}