forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rotation_matrix.h
1090 lines (1020 loc) · 52.9 KB
/
rotation_matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include <cmath>
#include <limits>
#include <string>
#include <Eigen/Dense>
#include <fmt/format.h>
#include "drake/common/drake_assert.h"
#include "drake/common/drake_bool.h"
#include "drake/common/drake_copyable.h"
#include "drake/common/drake_throw.h"
#include "drake/common/eigen_types.h"
#include "drake/common/never_destroyed.h"
#include "drake/common/symbolic.h"
#include "drake/math/roll_pitch_yaw.h"
namespace drake {
namespace math {
/// This class represents a 3x3 rotation matrix between two arbitrary frames
/// A and B and helps ensure users create valid rotation matrices. This class
/// relates right-handed orthogonal unit vectors Ax, Ay, Az fixed in frame A
/// to right-handed orthogonal unit vectors Bx, By, Bz fixed in frame B.
/// The monogram notation for the rotation matrix relating A to B is `R_AB`.
/// An example that gives context to this rotation matrix is `v_A = R_AB * v_B`,
/// where `v_B` denotes an arbitrary vector v expressed in terms of Bx, By, Bz
/// and `v_A` denotes vector v expressed in terms of Ax, Ay, Az.
/// See @ref multibody_quantities for monogram notation for dynamics.
/// See @ref orientation_discussion "a discussion on rotation matrices".
///
/// @note This class does not store the frames associated with a rotation matrix
/// nor does it enforce strict proper usage of this class with vectors.
///
/// @note When assertions are enabled, several methods in this class
/// do a validity check and throw an exception (std::logic_error) if the
/// rotation matrix is invalid. When assertions are disabled,
/// many of these validity checks are skipped (which helps improve speed).
/// In addition, these validity tests are only performed for scalar types for
/// which drake::scalar_predicate<T>::is_bool is `true`. For instance, validity
/// checks are not performed when T is symbolic::Expression.
///
/// @authors Paul Mitiguy (2018) Original author.
/// @authors Drake team (see https://drake.mit.edu/credits).
///
/// @tparam T The underlying scalar type. Must be a valid Eigen scalar.
///
/// Instantiated templates for the following kinds of T's are provided:
///
/// - double
/// - AutoDiffXd
/// - symbolic::Expression
template <typename T>
class RotationMatrix {
public:
DRAKE_DEFAULT_COPY_AND_MOVE_AND_ASSIGN(RotationMatrix)
/// Constructs a 3x3 identity %RotationMatrix -- which corresponds to
/// aligning two frames (so that unit vectors Ax = Bx, Ay = By, Az = Bz).
RotationMatrix() : R_AB_(Matrix3<T>::Identity()) {}
/// Constructs a %RotationMatrix from a Matrix3.
/// @param[in] R an allegedly valid rotation matrix.
/// @throws std::logic_error in debug builds if R fails IsValid(R).
explicit RotationMatrix(const Matrix3<T>& R) { set(R); }
/// Constructs a %RotationMatrix from an Eigen::Quaternion.
/// @param[in] quaternion a non-zero, finite quaternion which may or may not
/// have unit length [i.e., `quaternion.norm()` does not have to be 1].
/// @throws std::logic_error in debug builds if the rotation matrix
/// R that is built from `quaternion` fails IsValid(R). For example, an
/// exception is thrown if `quaternion` is zero or contains a NaN or infinity.
/// @note This method has the effect of normalizing its `quaternion` argument,
/// without the inefficiency of the square-root associated with normalization.
explicit RotationMatrix(const Eigen::Quaternion<T>& quaternion) {
// TODO(mitiguy) Although this method is fairly efficient, consider adding
// an optional second argument if `quaternion` is known to be normalized
// apriori or for some reason the calling site does not want `quaternion`
// normalized.
// Cost for various way to create a rotation matrix from a quaternion.
// Eigen quaternion.toRotationMatrix() = 12 multiplies, 12 adds.
// Drake QuaternionToRotationMatrix() = 12 multiplies, 12 adds.
// Extra cost for two_over_norm_squared = 4 multiplies, 3 adds, 1 divide.
// Extra cost if normalized = 4 multiplies, 3 adds, 1 sqrt, 1 divide.
const T two_over_norm_squared = T(2) / quaternion.squaredNorm();
set(QuaternionToRotationMatrix(quaternion, two_over_norm_squared));
}
// @internal In general, the %RotationMatrix constructed by passing a non-unit
// `lambda` to this method is different than the %RotationMatrix produced by
// converting `lambda` to an un-normalized quaternion and calling the
// %RotationMatrix constructor (above) with that un-normalized quaternion.
/// Constructs a %RotationMatrix from an Eigen::AngleAxis.
/// @param[in] theta_lambda an Eigen::AngleAxis whose associated axis (vector
/// direction herein called `lambda`) is non-zero and finite, but which may or
/// may not have unit length [i.e., `lambda.norm()` does not have to be 1].
/// @throws std::logic_error in debug builds if the rotation matrix
/// R that is built from `theta_lambda` fails IsValid(R). For example, an
/// exception is thrown if `lambda` is zero or contains a NaN or infinity.
explicit RotationMatrix(const Eigen::AngleAxis<T>& theta_lambda) {
// TODO(mitiguy) Consider adding an optional second argument if `lambda` is
// known to be normalized apriori or calling site does not want
// normalization.
const Vector3<T>& lambda = theta_lambda.axis();
const T norm = lambda.norm();
const T& theta = theta_lambda.angle();
set(Eigen::AngleAxis<T>(theta, lambda / norm).toRotationMatrix());
}
/// Constructs a %RotationMatrix from an %RollPitchYaw. In other words,
/// makes the %RotationMatrix for a Space-fixed (extrinsic) X-Y-Z rotation by
/// "roll-pitch-yaw" angles `[r, p, y]`, which is equivalent to a Body-fixed
/// (intrinsic) Z-Y-X rotation by "yaw-pitch-roll" angles `[y, p, r]`.
/// @param[in] rpy radian measures of three angles [roll, pitch, yaw].
/// @param[in] rpy a %RollPitchYaw which is a Space-fixed (extrinsic) X-Y-Z
/// rotation with "roll-pitch-yaw" angles `[r, p, y]` or equivalently a Body-
/// fixed (intrinsic) Z-Y-X rotation with "yaw-pitch-roll" angles `[y, p, r]`.
/// @note Denoting roll `r`, pitch `p`, yaw `y`, this method returns a
/// rotation matrix `R_AD` equal to the matrix multiplication shown below.
/// ```
/// ⎡cos(y) -sin(y) 0⎤ ⎡ cos(p) 0 sin(p)⎤ ⎡1 0 0 ⎤
/// R_AD = ⎢sin(y) cos(y) 0⎥ * ⎢ 0 1 0 ⎥ * ⎢0 cos(r) -sin(r)⎥
/// ⎣ 0 0 1⎦ ⎣-sin(p) 0 cos(p)⎦ ⎣0 sin(r) cos(r)⎦
/// = R_AB * R_BC * R_CD
/// ```
/// @note In this discussion, A is the Space frame and D is the Body frame.
/// One way to visualize this rotation sequence is by introducing intermediate
/// frames B and C (useful constructs to understand this rotation sequence).
/// Initially, the frames are aligned so `Di = Ci = Bi = Ai (i = x, y, z)`.
/// Then D is subjected to successive right-handed rotations relative to A.
/// @li 1st rotation R_CD: %Frame D rotates relative to frames C, B, A by a
/// roll angle `r` about `Dx = Cx`. Note: D and C are no longer aligned.
/// @li 2nd rotation R_BC: Frames D, C (collectively -- as if welded together)
/// rotate relative to frame B, A by a pitch angle `p` about `Cy = By`.
/// Note: C and B are no longer aligned.
/// @li 3rd rotation R_AB: Frames D, C, B (collectively -- as if welded)
/// rotate relative to frame A by a roll angle `y` about `Bz = Az`.
/// Note: B and A are no longer aligned.
/// @note This method constructs a RotationMatrix from a RollPitchYaw.
/// Vice-versa, there are high-accuracy RollPitchYaw constructor/methods that
/// form a RollPitchYaw from a rotation matrix.
explicit RotationMatrix(const RollPitchYaw<T>& rpy) {
// TODO(@mitiguy) Add publically viewable documentation on how Sherm and
// Goldstein like to visualize/conceptualize rotation sequences.
const T& r = rpy.roll_angle();
const T& p = rpy.pitch_angle();
const T& y = rpy.yaw_angle();
using std::sin;
using std::cos;
const T c0 = cos(r), c1 = cos(p), c2 = cos(y);
const T s0 = sin(r), s1 = sin(p), s2 = sin(y);
const T c2_s1 = c2 * s1, s2_s1 = s2 * s1;
const T Rxx = c2 * c1;
const T Rxy = c2_s1 * s0 - s2 * c0;
const T Rxz = c2_s1 * c0 + s2 * s0;
const T Ryx = s2 * c1;
const T Ryy = s2_s1 * s0 + c2 * c0;
const T Ryz = s2_s1 * c0 - c2 * s0;
const T Rzx = -s1;
const T Rzy = c1 * s0;
const T Rzz = c1 * c0;
SetFromOrthonormalRows(Vector3<T>(Rxx, Rxy, Rxz),
Vector3<T>(Ryx, Ryy, Ryz),
Vector3<T>(Rzx, Rzy, Rzz));
}
/// (Advanced) Makes the %RotationMatrix `R_AB` from right-handed orthogonal
/// unit vectors `Bx`, `By`, `Bz` so the columns of `R_AB` are `[Bx, By, Bz]`.
/// @param[in] Bx first unit vector in right-handed orthogonal set.
/// @param[in] By second unit vector in right-handed orthogonal set.
/// @param[in] Bz third unit vector in right-handed orthogonal set.
/// @throws std::logic_error in debug builds if `R_AB` fails IsValid(R_AB).
/// @note In release builds, the caller can subsequently test if `R_AB` is,
/// in fact, a valid %RotationMatrix by calling `R_AB.IsValid()`.
/// @note The rotation matrix `R_AB` relates two sets of right-handed
/// orthogonal unit vectors, namely Ax, Ay, Az and Bx, By, Bz.
/// The rows of `R_AB` are Ax, Ay, Az expressed in frame B (i.e.,`Ax_B`,
/// `Ay_B`, `Az_B`). The columns of `R_AB` are Bx, By, Bz expressed in
/// frame A (i.e., `Bx_A`, `By_A`, `Bz_A`).
static RotationMatrix<T> MakeFromOrthonormalColumns(
const Vector3<T>& Bx, const Vector3<T>& By, const Vector3<T>& Bz) {
RotationMatrix<T> R(DoNotInitializeMemberFields{});
R.SetFromOrthonormalColumns(Bx, By, Bz);
return R;
}
/// (Advanced) Makes the %RotationMatrix `R_AB` from right-handed orthogonal
/// unit vectors `Ax`, `Ay`, `Az` so the rows of `R_AB` are `[Ax, Ay, Az]`.
/// @param[in] Ax first unit vector in right-handed orthogonal set.
/// @param[in] Ay second unit vector in right-handed orthogonal set.
/// @param[in] Az third unit vector in right-handed orthogonal set.
/// @throws std::logic_error in debug builds if `R_AB` fails IsValid(R_AB).
/// @note In release builds, the caller can subsequently test if `R_AB` is,
/// in fact, a valid %RotationMatrix by calling `R_AB.IsValid()`.
/// @note The rotation matrix `R_AB` relates two sets of right-handed
/// orthogonal unit vectors, namely Ax, Ay, Az and Bx, By, Bz.
/// The rows of `R_AB` are Ax, Ay, Az expressed in frame B (i.e.,`Ax_B`,
/// `Ay_B`, `Az_B`). The columns of `R_AB` are Bx, By, Bz expressed in
/// frame A (i.e., `Bx_A`, `By_A`, `Bz_A`).
static RotationMatrix<T> MakeFromOrthonormalRows(
const Vector3<T>& Ax, const Vector3<T>& Ay, const Vector3<T>& Az) {
RotationMatrix<T> R(DoNotInitializeMemberFields{});
R.SetFromOrthonormalRows(Ax, Ay, Az);
return R;
}
/// Makes the %RotationMatrix `R_AB` associated with rotating a frame B
/// relative to a frame A by an angle `theta` about unit vector `Ax = Bx`.
/// @param[in] theta radian measure of rotation angle about Ax.
/// @note Orientation is same as Eigen::AngleAxis<T>(theta, Vector3d::UnitX().
/// @note `R_AB` relates two frames A and B having unit vectors Ax, Ay, Az and
/// Bx, By, Bz. Initially, `Bx = Ax`, `By = Ay`, `Bz = Az`, then B undergoes
/// a right-handed rotation relative to A by an angle `theta` about `Ax = Bx`.
/// ```
/// ⎡ 1 0 0 ⎤
/// R_AB = ⎢ 0 cos(theta) -sin(theta) ⎥
/// ⎣ 0 sin(theta) cos(theta) ⎦
/// ```
static RotationMatrix<T> MakeXRotation(const T& theta) {
Matrix3<T> R;
using std::sin;
using std::cos;
const T c = cos(theta), s = sin(theta);
// clang-format off
R << 1, 0, 0,
0, c, -s,
0, s, c;
// clang-format on
return RotationMatrix(R);
}
/// Makes the %RotationMatrix `R_AB` associated with rotating a frame B
/// relative to a frame A by an angle `theta` about unit vector `Ay = By`.
/// @param[in] theta radian measure of rotation angle about Ay.
/// @note Orientation is same as Eigen::AngleAxis<T>(theta, Vector3d::UnitY().
/// @note `R_AB` relates two frames A and B having unit vectors Ax, Ay, Az and
/// Bx, By, Bz. Initially, `Bx = Ax`, `By = Ay`, `Bz = Az`, then B undergoes
/// a right-handed rotation relative to A by an angle `theta` about `Ay = By`.
/// ```
/// ⎡ cos(theta) 0 sin(theta) ⎤
/// R_AB = ⎢ 0 1 0 ⎥
/// ⎣ -sin(theta) 0 cos(theta) ⎦
/// ```
static RotationMatrix<T> MakeYRotation(const T& theta) {
Matrix3<T> R;
using std::sin;
using std::cos;
const T c = cos(theta), s = sin(theta);
// clang-format off
R << c, 0, s,
0, 1, 0,
-s, 0, c;
// clang-format on
return RotationMatrix(R);
}
/// Makes the %RotationMatrix `R_AB` associated with rotating a frame B
/// relative to a frame A by an angle `theta` about unit vector `Az = Bz`.
/// @param[in] theta radian measure of rotation angle about Az.
/// @note Orientation is same as Eigen::AngleAxis<T>(theta, Vector3d::UnitZ().
/// @note `R_AB` relates two frames A and B having unit vectors Ax, Ay, Az and
/// Bx, By, Bz. Initially, `Bx = Ax`, `By = Ay`, `Bz = Az`, then B undergoes
/// a right-handed rotation relative to A by an angle `theta` about `Az = Bz`.
/// ```
/// ⎡ cos(theta) -sin(theta) 0 ⎤
/// R_AB = ⎢ sin(theta) cos(theta) 0 ⎥
/// ⎣ 0 0 1 ⎦
/// ```
static RotationMatrix<T> MakeZRotation(const T& theta) {
Matrix3<T> R;
using std::sin;
using std::cos;
const T c = cos(theta), s = sin(theta);
// clang-format off
R << c, -s, 0,
s, c, 0,
0, 0, 1;
// clang-format on
return RotationMatrix(R);
}
/// Creates a %RotationMatrix templatized on a scalar type U from a
/// %RotationMatrix templatized on scalar type T. For example,
/// ```
/// RotationMatrix<double> source = RotationMatrix<double>::Identity();
/// RotationMatrix<AutoDiffXd> foo = source.cast<AutoDiffXd>();
/// ```
/// @tparam U Scalar type on which the returned %RotationMatrix is templated.
/// @note `RotationMatrix<From>::cast<To>()` creates a new
/// `RotationMatrix<To>` from a `RotationMatrix<From>` but only if
/// type `To` is constructible from type `From`.
/// This cast method works in accordance with Eigen's cast method for Eigen's
/// %Matrix3 that underlies this %RotationMatrix. For example, Eigen
/// currently allows cast from type double to AutoDiffXd, but not vice-versa.
template <typename U>
RotationMatrix<U> cast() const {
// TODO(Mitiguy) Make the RotationMatrix::cast() method more robust. It is
// currently limited by Eigen's cast() for the matrix underlying this class.
// Consider the following logic to improve casts (and address issue #11785).
// 1. If relevant, use Eigen's underlying cast method.
// 2. Strip derivative data when casting from `<AutoDiffXd>` to `<double>`.
// 3. Call ExtractDoubleOrThrow() when casting from `<symbolic::Expression>`
// to `<double>`.
// 4. The current RotationMatrix::cast() method incurs overhead due to its
// underlying call to a RotationMatrix constructor. Perhaps create
// specialized code to return a reference if casting to the same type,
// e.g., casting from `<double>` to `<double>' should be inexpensive.
const Matrix3<U> m = R_AB_.template cast<U>();
return RotationMatrix<U>(m, true);
}
/// Sets `this` %RotationMatrix from a Matrix3.
/// @param[in] R an allegedly valid rotation matrix.
/// @throws std::logic_error in debug builds if R fails IsValid(R).
void set(const Matrix3<T>& R) {
DRAKE_ASSERT_VOID(ThrowIfNotValid(R));
SetUnchecked(R);
}
/// Returns the 3x3 identity %RotationMatrix.
// @internal This method's name was chosen to mimic Eigen's Identity().
static const RotationMatrix<T>& Identity() {
static const never_destroyed<RotationMatrix<T>> kIdentity;
return kIdentity.access();
}
/// Returns `R_BA = R_AB⁻¹`, the inverse (transpose) of this %RotationMatrix.
/// @note For a valid rotation matrix `R_BA = R_AB⁻¹ = R_ABᵀ`.
// @internal This method's name was chosen to mimic Eigen's inverse().
RotationMatrix<T> inverse() const {
return RotationMatrix<T>(R_AB_.transpose());
}
/// Returns `R_BA = R_AB⁻¹`, the transpose of this %RotationMatrix.
/// @note For a valid rotation matrix `R_BA = R_AB⁻¹ = R_ABᵀ`.
// @internal This method's name was chosen to mimic Eigen's transpose().
RotationMatrix<T> transpose() const {
return RotationMatrix<T>(R_AB_.transpose());
}
/// Returns the Matrix3 underlying a %RotationMatrix.
/// @see col(), row()
const Matrix3<T>& matrix() const { return R_AB_; }
/// Returns `this` rotation matrix's iᵗʰ row (i = 0, 1, 2).
/// For `this` rotation matrix R_AB (which relates right-handed
/// sets of orthogonal unit vectors Ax, Ay, Az to Bx, By, Bz),
/// - row(0) returns Ax_B (Ax expressed in terms of Bx, By, Bz).
/// - row(1) returns Ay_B (Ay expressed in terms of Bx, By, Bz).
/// - row(2) returns Az_B (Az expressed in terms of Bx, By, Bz).
/// @param[in] index requested row index (0 <= index <= 2).
/// @see col(), matrix()
/// @throws In debug builds, asserts (0 <= index <= 2).
/// @note For efficiency and consistency with Eigen, this method returns
/// the same quantity returned by Eigen's row() operator.
/// The returned quantity can be assigned in various ways, e.g., as
/// `const auto& Az_B = row(2);` or `RowVector3<T> Az_B = row(2);`
const Eigen::Block<const Matrix3<T>, 1, 3, false> row(int index) const {
// The returned value from this method mimics Eigen's row() method which was
// found in Eigen/src/plugins/BlockMethods.h. The Eigen Matrix3 R_AB_ that
// underlies this class is a column major matrix. To return a row,
// InnerPanel = false is passed as the last template parameter above.
DRAKE_ASSERT(0 <= index && index <= 2);
return R_AB_.row(index);
}
/// Returns `this` rotation matrix's iᵗʰ column (i = 0, 1, 2).
/// For `this` rotation matrix R_AB (which relates right-handed
/// sets of orthogonal unit vectors Ax, Ay, Az to Bx, By, Bz),
/// - col(0) returns Bx_A (Bx expressed in terms of Ax, Ay, Az).
/// - col(1) returns By_A (By expressed in terms of Ax, Ay, Az).
/// - col(2) returns Bz_A (Bz expressed in terms of Ax, Ay, Az).
/// @param[in] index requested column index (0 <= index <= 2).
/// @see row(), matrix()
/// @throws In debug builds, asserts (0 <= index <= 2).
/// @note For efficiency and consistency with Eigen, this method returns
/// the same quantity returned by Eigen's col() operator.
/// The returned quantity can be assigned in various ways, e.g., as
/// `const auto& Bz_A = col(2);` or `Vector3<T> Bz_A = col(2);`
const Eigen::Block<const Matrix3<T>, 3, 1, true> col(int index) const {
// The returned value from this method mimics Eigen's col() method which was
// found in Eigen/src/plugins/BlockMethods.h. The Eigen Matrix3 R_AB_ that
// underlies this class is a column major matrix. To return a column,
// InnerPanel = true is passed as the last template parameter above.
DRAKE_ASSERT(0 <= index && index <= 2);
return R_AB_.col(index);
}
/// In-place multiply of `this` rotation matrix `R_AB` by `other` rotation
/// matrix `R_BC`. On return, `this` is set to equal `R_AB * R_BC`.
/// @param[in] other %RotationMatrix that post-multiplies `this`.
/// @returns `this` rotation matrix which has been multiplied by `other`.
/// @note It is possible (albeit improbable) to create an invalid rotation
/// matrix by accumulating round-off error with a large number of multiplies.
RotationMatrix<T>& operator*=(const RotationMatrix<T>& other) {
SetUnchecked(matrix() * other.matrix());
return *this;
}
/// Calculates `this` rotation matrix `R_AB` multiplied by `other` rotation
/// matrix `R_BC`, returning the composition `R_AB * R_BC`.
/// @param[in] other %RotationMatrix that post-multiplies `this`.
/// @returns rotation matrix that results from `this` multiplied by `other`.
/// @note It is possible (albeit improbable) to create an invalid rotation
/// matrix by accumulating round-off error with a large number of multiplies.
RotationMatrix<T> operator*(const RotationMatrix<T>& other) const {
return RotationMatrix<T>(matrix() * other.matrix(), true);
}
/// Calculates `this` rotation matrix `R_AB` multiplied by an arbitrary
/// Vector3 expressed in the B frame.
/// @param[in] v_B 3x1 vector that post-multiplies `this`.
/// @returns 3x1 vector `v_A = R_AB * v_B`.
Vector3<T> operator*(const Vector3<T>& v_B) const {
return Vector3<T>(matrix() * v_B);
}
/// Multiplies `this` %RotationMatrix `R_AB` by the n vectors `v1`, ... `vn`,
/// where each vector has 3 elements and is expressed in frame B.
/// @param[in] v_B `3 x n` matrix whose n columns are regarded as arbitrary
/// vectors `v1`, ... `vn` expressed in frame B.
/// @retval v_A `3 x n` matrix whose n columns are vectors `v1`, ... `vn`
/// expressed in frame A.
/// @code{.cc}
/// const RollPitchYaw<double> rpy(0.1, 0.2, 0.3);
/// const RotationMatrix<double> R_AB(rpy);
/// Eigen::Matrix<double, 3, 2> v_B;
/// v_B.col(0) = Vector3d(4, 5, 6);
/// v_B.col(1) = Vector3d(9, 8, 7);
/// const Eigen::Matrix<double, 3, 2> v_A = R_AB * v_B;
/// @endcode
template <typename Derived>
Eigen::Matrix<typename Derived::Scalar, 3, Derived::ColsAtCompileTime>
operator*(const Eigen::MatrixBase<Derived>& v_B) const {
if (v_B.rows() != 3) {
throw std::logic_error(
"Error: Inner dimension for matrix multiplication is not 3.");
}
// Express vectors in terms of frame A as v_A = R_AB * v_B.
return matrix() * v_B;
}
/// Returns how close the matrix R is to to being a 3x3 orthonormal matrix by
/// computing `‖R ⋅ Rᵀ - I‖∞` (i.e., the maximum absolute value of the
/// difference between the elements of R ⋅ Rᵀ and the 3x3 identity matrix).
/// @param[in] R matrix being checked for orthonormality.
/// @returns `‖R ⋅ Rᵀ - I‖∞`
static T GetMeasureOfOrthonormality(const Matrix3<T>& R) {
const Matrix3<T> m = R * R.transpose();
return GetMaximumAbsoluteDifference(m, Matrix3<T>::Identity());
}
/// Tests if a generic Matrix3 has orthonormal vectors to within the threshold
/// specified by `tolerance`.
/// @param[in] R an allegedly orthonormal rotation matrix.
/// @param[in] tolerance maximum allowable absolute difference between R * Rᵀ
/// and the identity matrix I, i.e., checks if `‖R ⋅ Rᵀ - I‖∞ <= tolerance`.
/// @returns `true` if R is an orthonormal matrix.
static boolean<T> IsOrthonormal(const Matrix3<T>& R, double tolerance) {
return GetMeasureOfOrthonormality(R) <= tolerance;
}
/// Tests if a generic Matrix3 seems to be a proper orthonormal rotation
/// matrix to within the threshold specified by `tolerance`.
/// @param[in] R an allegedly valid rotation matrix.
/// @param[in] tolerance maximum allowable absolute difference of `R * Rᵀ`
/// and the identity matrix I (i.e., checks if `‖R ⋅ Rᵀ - I‖∞ <= tolerance`).
/// @returns `true` if R is a valid rotation matrix.
static boolean<T> IsValid(const Matrix3<T>& R, double tolerance) {
return IsOrthonormal(R, tolerance) && R.determinant() > 0;
}
/// Tests if a generic Matrix3 is a proper orthonormal rotation matrix to
/// within the threshold of get_internal_tolerance_for_orthonormality().
/// @param[in] R an allegedly valid rotation matrix.
/// @returns `true` if R is a valid rotation matrix.
static boolean<T> IsValid(const Matrix3<T>& R) {
return IsValid(R, get_internal_tolerance_for_orthonormality());
}
/// Tests if `this` rotation matrix R is a proper orthonormal rotation matrix
/// to within the threshold of get_internal_tolerance_for_orthonormality().
/// @returns `true` if `this` is a valid rotation matrix.
boolean<T> IsValid() const { return IsValid(matrix()); }
/// Returns `true` if `this` is exactly equal to the identity matrix.
boolean<T> IsExactlyIdentity() const {
return matrix() == Matrix3<T>::Identity();
}
/// Returns true if `this` is equal to the identity matrix to within the
/// threshold of get_internal_tolerance_for_orthonormality().
boolean<T> IsIdentityToInternalTolerance() const {
return IsNearlyEqualTo(matrix(), Matrix3<T>::Identity(),
get_internal_tolerance_for_orthonormality());
}
/// Compares each element of `this` to the corresponding element of `other`
/// to check if they are the same to within a specified `tolerance`.
/// @param[in] other %RotationMatrix to compare to `this`.
/// @param[in] tolerance maximum allowable absolute difference between the
/// matrix elements in `this` and `other`.
/// @returns `true` if `‖this - other‖∞ <= tolerance`.
boolean<T> IsNearlyEqualTo(const RotationMatrix<T>& other,
double tolerance) const {
return IsNearlyEqualTo(matrix(), other.matrix(), tolerance);
}
/// Compares each element of `this` to the corresponding element of `other`
/// to check if they are exactly the same.
/// @param[in] other %RotationMatrix to compare to `this`.
/// @returns true if each element of `this` is exactly equal to the
/// corresponding element in `other`.
boolean<T> IsExactlyEqualTo(const RotationMatrix<T>& other) const {
return matrix() == other.matrix();
}
/// Computes the infinity norm of `this` - `other` (i.e., the maximum absolute
/// value of the difference between the elements of `this` and `other`).
/// @param[in] other %RotationMatrix to subtract from `this`.
/// @returns `‖this - other‖∞`
T GetMaximumAbsoluteDifference(const RotationMatrix<T>& other) const {
return GetMaximumAbsoluteDifference(matrix(), other.matrix());
}
/// Given an approximate rotation matrix M, finds the %RotationMatrix R
/// closest to M. Closeness is measured with a matrix-2 norm (or equivalently
/// with a Frobenius norm). Hence, this method creates a %RotationMatrix R
/// from a 3x3 matrix M by minimizing `‖R - M‖₂` (the matrix-2 norm of (R-M))
/// subject to `R * Rᵀ = I`, where I is the 3x3 identity matrix. For this
/// problem, closeness can also be measured by forming the orthonormal matrix
/// R whose elements minimize the double-summation `∑ᵢ ∑ⱼ (R(i,j) - M(i,j))²`
/// where `i = 1:3, j = 1:3`, subject to `R * Rᵀ = I`. The square-root of
/// this double-summation is called the Frobenius norm.
/// @param[in] M a 3x3 matrix.
/// @param[out] quality_factor. The quality of M as a rotation matrix.
/// `quality_factor` = 1 is perfect (M = R). `quality_factor` = 1.25 means
/// that when M multiplies a unit vector (magnitude 1), a vector of magnitude
/// as large as 1.25 may result. `quality_factor` = 0.8 means that when M
/// multiplies a unit vector, a vector of magnitude as small as 0.8 may
/// result. `quality_factor` = 0 means M is singular, so at least one of the
/// bases related by matrix M does not span 3D space (when M multiples a unit
/// vector, a vector of magnitude as small as 0 may result).
/// @returns proper orthonormal matrix R that is closest to M.
/// @throws std::logic_error if R fails IsValid(R).
/// @note William Kahan (UC Berkeley) and Hongkai Dai (Toyota Research
/// Institute) proved that for this problem, the same R that minimizes the
/// Frobenius norm also minimizes the matrix-2 norm (a.k.a an induced-2 norm),
/// which is defined [Dahleh, Section 4.2] as the column matrix u which
/// maximizes `‖(R - M) u‖ / ‖u‖`, where `u ≠ 0`. Since the matrix-2 norm of
/// any matrix A is equal to the maximum singular value of A, minimizing the
/// matrix-2 norm of (R - M) is equivalent to minimizing the maximum singular
/// value of (R - M).
///
/// - [Dahleh] "Lectures on Dynamic Systems and Controls: Electrical
/// Engineering and Computer Science, Massachusetts Institute of Technology"
/// https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap04.pdf
static RotationMatrix<T>
ProjectToRotationMatrix(const Matrix3<T>& M, T* quality_factor = nullptr) {
const Matrix3<T> M_orthonormalized =
ProjectMatrix3ToOrthonormalMatrix3(M, quality_factor);
ThrowIfNotValid(M_orthonormalized);
return RotationMatrix<T>(M_orthonormalized, true);
}
/// Returns an internal tolerance that checks rotation matrix orthonormality.
/// @returns internal tolerance (small multiplier of double-precision epsilon)
/// used to check whether or not a rotation matrix is orthonormal.
/// @note The tolerance is chosen by developers to ensure a reasonably
/// valid (orthonormal) rotation matrix.
/// @note To orthonormalize a 3x3 matrix, use ProjectToRotationMatrix().
static double get_internal_tolerance_for_orthonormality() {
return kInternalToleranceForOrthonormality;
}
/// Returns a quaternion q that represents `this` %RotationMatrix. Since the
/// quaternion `q` and `-q` represent the same %RotationMatrix, this method
/// chooses to return a canonical quaternion, i.e., with q(0) >= 0.
/// @note There is a constructor in the RollPitchYaw class that converts
/// a rotation matrix to roll-pitch-yaw angles.
Eigen::Quaternion<T> ToQuaternion() const { return ToQuaternion(R_AB_); }
/// Returns a unit quaternion q associated with the 3x3 matrix M. Since the
/// quaternion `q` and `-q` represent the same %RotationMatrix, this method
/// chooses to return a canonical quaternion, i.e., with q(0) >= 0.
/// @param[in] M 3x3 matrix to be made into a quaternion.
/// @returns a unit quaternion q in canonical form, i.e., with q(0) >= 0.
/// @throws std::logic_error in debug builds if the quaternion `q`
/// returned by this method cannot construct a valid %RotationMatrix.
/// For example, if `M` contains NaNs, `q` will not be a valid quaternion.
static Eigen::Quaternion<T> ToQuaternion(
const Eigen::Ref<const Matrix3<T>>& M) {
Eigen::Quaternion<T> q = RotationMatrixToUnnormalizedQuaternion(M);
// Since the quaternions q and -q correspond to the same rotation matrix,
// choose to return a canonical quaternion, i.e., with q(0) >= 0.
const T canonical_factor = if_then_else(q.w() < 0, T(-1), T(1));
// The quantity q calculated thus far in this algorithm is not a quaternion
// with magnitude 1. It differs from a quaternion in that all elements of
// q are scaled by the same factor. To return a valid quaternion, q must be
// normalized so q(0)^2 + q(1)^2 + q(2)^2 + q(3)^2 = 1.
const T scale = canonical_factor / q.norm();
q.coeffs() *= scale;
DRAKE_ASSERT_VOID(ThrowIfNotValid(QuaternionToRotationMatrix(q, T(2))));
return q;
}
/// Utility method to return the Vector4 associated with ToQuaternion().
/// @see ToQuaternion().
Vector4<T> ToQuaternionAsVector4() const {
return ToQuaternionAsVector4(R_AB_);
}
/// Utility method to return the Vector4 associated with ToQuaternion(M).
/// @param[in] M 3x3 matrix to be made into a quaternion.
/// @see ToQuaternion().
static Vector4<T> ToQuaternionAsVector4(const Matrix3<T>& M) {
const Eigen::Quaternion<T> q = ToQuaternion(M);
return Vector4<T>(q.w(), q.x(), q.y(), q.z());
}
/// Returns an AngleAxis `theta_lambda` containing an angle `theta` and unit
/// vector (axis direction) `lambda` that represents `this` %RotationMatrix.
/// @note The orientation and %RotationMatrix associated with `theta * lambda`
/// is identical to that of `(-theta) * (-lambda)`. The AngleAxis returned by
/// this method chooses to have `0 <= theta <= pi`.
/// @returns an AngleAxis with `0 <= theta <= pi` and a unit vector `lambda`.
Eigen::AngleAxis<T> ToAngleAxis() const {
const Eigen::AngleAxis<T> theta_lambda(this->matrix());
return theta_lambda;
}
private:
// Make RotationMatrix<U> templatized on any typename U be a friend of a
// %RotationMatrix templatized on any other typename T.
// This is needed for the method RotationMatrix<T>::cast<U>() to be able to
// use the necessary private constructor.
template <typename U>
friend class RotationMatrix;
// Declares the allowable tolerance (small multiplier of double-precision
// epsilon) used to check whether or not a rotation matrix is orthonormal.
static constexpr double kInternalToleranceForOrthonormality{
128 * std::numeric_limits<double>::epsilon() };
// Constructs a RotationMatrix without initializing the underlying 3x3 matrix.
struct DoNotInitializeMemberFields{};
explicit RotationMatrix(DoNotInitializeMemberFields) {}
// Constructs a %RotationMatrix from a Matrix3. No check is performed to test
// whether or not the parameter R is a valid rotation matrix.
// @param[in] R an allegedly valid rotation matrix.
// @note The second parameter is just a dummy to distinguish this constructor
// from one of the public constructors.
RotationMatrix(const Matrix3<T>& R, bool) : R_AB_(R) {}
// Sets `this` %RotationMatrix from a Matrix3. No check is performed to
// test whether or not the parameter R is a valid rotation matrix.
// @param[in] R an allegedly valid rotation matrix.
void SetUnchecked(const Matrix3<T>& R) { R_AB_ = R; }
// Sets `this` %RotationMatrix `R_AB` from right-handed orthogonal unit
// vectors `Bx`, `By`, `Bz` so that the columns of `this` are `[Bx, By, Bz]`.
// @param[in] Bx first unit vector in right-handed orthogonal basis.
// @param[in] By second unit vector in right-handed orthogonal basis.
// @param[in] Bz third unit vector in right-handed orthogonal basis.
// @throws std::logic_error in debug builds if `R_AB` fails IsValid(R_AB).
// @note The rotation matrix `R_AB` relates two sets of right-handed
// orthogonal unit vectors, namely `Ax`, `Ay`, `Az` and `Bx`, `By`, `Bz`.
// The rows of `R_AB` are `Ax`, `Ay`, `Az` whereas the
// columns of `R_AB` are `Bx`, `By`, `Bz`.
void SetFromOrthonormalColumns(const Vector3<T>& Bx,
const Vector3<T>& By,
const Vector3<T>& Bz) {
R_AB_.col(0) = Bx;
R_AB_.col(1) = By;
R_AB_.col(2) = Bz;
DRAKE_ASSERT_VOID(ThrowIfNotValid(R_AB_));
}
// Sets `this` %RotationMatrix `R_AB` from right-handed orthogonal unit
// vectors `Ax`, `Ay`, `Az` so that the rows of `this` are `[Ax, Ay, Az]`.
// @param[in] Ax first unit vector in right-handed orthogonal basis.
// @param[in] Ay second unit vector in right-handed orthogonal basis.
// @param[in] Az third unit vector in right-handed orthogonal basis.
// @throws std::logic_error in debug builds if `R_AB` fails R_AB.IsValid().
// @see SetFromOrthonormalColumns() for additional notes.
void SetFromOrthonormalRows(const Vector3<T>& Ax,
const Vector3<T>& Ay,
const Vector3<T>& Az) {
R_AB_.row(0) = Ax;
R_AB_.row(1) = Ay;
R_AB_.row(2) = Az;
DRAKE_ASSERT_VOID(ThrowIfNotValid(R_AB_));
}
// Computes the infinity norm of R - `other` (i.e., the maximum absolute
// value of the difference between the elements of R and `other`).
// @param[in] R matrix from which `other` is subtracted.
// @param[in] other matrix to subtract from R.
// @returns `‖R - other‖∞`
static T GetMaximumAbsoluteDifference(const Matrix3<T>& R,
const Matrix3<T>& other) {
const Matrix3<T> R_difference = R - other;
return R_difference.template lpNorm<Eigen::Infinity>();
}
// Compares corresponding elements in two matrices to check if they are the
// same to within a specified `tolerance`.
// @param[in] R matrix to compare to `other`.
// @param[in] other matrix to compare to R.
// @param[in] tolerance maximum allowable absolute difference between the
// matrix elements in R and `other`.
// @returns `true` if `‖R - `other`‖∞ <= tolerance`.
static boolean<T> IsNearlyEqualTo(const Matrix3<T>& R,
const Matrix3<T>& other,
double tolerance) {
const T R_max_difference = GetMaximumAbsoluteDifference(R, other);
return R_max_difference <= tolerance;
}
// Throws an exception if R is not a valid %RotationMatrix.
// @param[in] R an allegedly valid rotation matrix.
// @note If the underlying scalar type T is non-numeric (symbolic), no
// validity check is made and no assertion is thrown.
template <typename S = T>
static typename std::enable_if_t<scalar_predicate<S>::is_bool>
ThrowIfNotValid(const Matrix3<S>& R);
template <typename S = T>
static typename std::enable_if_t<!scalar_predicate<S>::is_bool>
ThrowIfNotValid(const Matrix3<S>&) {}
// Given an approximate rotation matrix M, finds the orthonormal matrix R
// closest to M. Closeness is measured with a matrix-2 norm (or equivalently
// with a Frobenius norm). Hence, this method creates an orthonormal matrix R
// from a 3x3 matrix M by minimizing `‖R - M‖₂` (the matrix-2 norm of (R-M))
// subject to `R * Rᵀ = I`, where I is the 3x3 identity matrix. For this
// problem, closeness can also be measured by forming the orthonormal matrix R
// whose elements minimize the double-summation `∑ᵢ ∑ⱼ (R(i,j) - M(i,j))²`
// where `i = 1:3, j = 1:3`, subject to `R * Rᵀ = I`. The square-root of
// this double-summation is called the Frobenius norm.
// @param[in] M a 3x3 matrix.
// @param[out] quality_factor. The quality of M as a rotation matrix.
// `quality_factor` = 1 is perfect (M = R). `quality_factor` = 1.25 means
// that when M multiplies a unit vector (magnitude 1), a vector of magnitude
// as large as 1.25 may result. `quality_factor` = -1 means M relates two
// perfectly orthonormal bases, but one is right-handed whereas the other is
// left-handed (M is a "reflection"). `quality_factor` = -0.8 means M
// relates a right-handed basis to a left-handed basis and when M multiplies
// a unit vector, a vector of magnitude as small as 0.8 may result.
// `quality_factor` = 0 means M is singular, so at least one of the bases
// related by matrix M does not span 3D space (when M multiples a unit vector,
// a vector of magnitude as small as 0 may result).
// @return orthonormal matrix R that is closest to M (note det(R) may be -1).
// @note The SVD part of this algorithm can be derived as a modification of
// section 3.2 in http://haralick.org/conferences/pose_estimation.pdf.
// @note William Kahan (UC Berkeley) and Hongkai Dai (Toyota Research
// Institute) proved that for this problem, the same R that minimizes the
// Frobenius norm also minimizes the matrix-2 norm (a.k.a an induced-2 norm),
// which is defined [Dahleh, Section 4.2] as the column matrix u which
// maximizes `‖(R - M) u‖ / ‖u‖`, where `u ≠ 0`. Since the matrix-2 norm of
// any matrix A is equal to the maximum singular value of A, minimizing the
// matrix-2 norm of (R - M) is equivalent to minimizing the maximum singular
// value of (R - M).
//
// - [Dahleh] "Lectures on Dynamic Systems and Controls: Electrical
// Engineering and Computer Science, Massachusetts Institute of Technology"
// https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap04.pdf
template <typename Derived>
static Matrix3<typename Derived::Scalar> ProjectMatrix3ToOrthonormalMatrix3(
const Eigen::MatrixBase<Derived>& M, T* quality_factor) {
DRAKE_DEMAND(M.rows() == 3 && M.cols() == 3);
const auto svd = M.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV);
if (quality_factor != nullptr) {
// Singular values are always non-negative and sorted in decreasing order.
const auto singular_values = svd.singularValues();
const T s_max = singular_values(0); // maximum singular value.
const T s_min = singular_values(2); // minimum singular value.
const T s_f = (s_max != 0.0 && s_min < 1.0/s_max) ? s_min : s_max;
const T det = M.determinant();
const double sign_det = (det > 0.0) ? 1 : ((det < 0.0) ? -1 : 0);
*quality_factor = s_f * sign_det;
}
return svd.matrixU() * svd.matrixV().transpose();
}
// This is a helper method for RotationMatrix::ToQuaternion that returns a
// Quaternion that is neither sign-canonicalized nor magnitude-normalized.
//
// This method is used for scalar types where scalar_predicate<T>::is_bool is
// true (e.g., T = `double` and T = `AutoDiffXd`). For types where is_bool
// is false (e.g., T = `symbolic::Expression`), the alternative specialization
// below is used instead. We have two implementations so that this method is
// as fast and compact as possible when `T = double`.
//
// N.B. Keep the math in this method in sync with the other specialization,
// immediately below.
template <typename S = T>
static std::enable_if_t<scalar_predicate<S>::is_bool, Eigen::Quaternion<S>>
RotationMatrixToUnnormalizedQuaternion(
const Eigen::Ref<const Matrix3<S>>& M) {
// This implementation is adapted from simbody at
// https://github.com/simbody/simbody/blob/master/SimTKcommon/Mechanics/src/Rotation.cpp
T w, x, y, z; // Elements of the quaternion, w relates to cos(theta/2).
const T trace = M.trace();
if (trace >= M(0, 0) && trace >= M(1, 1) && trace >= M(2, 2)) {
// This branch occurs if the trace is larger than any diagonal element.
w = T(1) + trace;
x = M(2, 1) - M(1, 2);
y = M(0, 2) - M(2, 0);
z = M(1, 0) - M(0, 1);
} else if (M(0, 0) >= M(1, 1) && M(0, 0) >= M(2, 2)) {
// This branch occurs if M(0,0) is largest among the diagonal elements.
w = M(2, 1) - M(1, 2);
x = T(1) - (trace - 2 * M(0, 0));
y = M(0, 1) + M(1, 0);
z = M(0, 2) + M(2, 0);
} else if (M(1, 1) >= M(2, 2)) {
// This branch occurs if M(1,1) is largest among the diagonal elements.
w = M(0, 2) - M(2, 0);
x = M(0, 1) + M(1, 0);
y = T(1) - (trace - 2 * M(1, 1));
z = M(1, 2) + M(2, 1);
} else {
// This branch occurs if M(2,2) is largest among the diagonal elements.
w = M(1, 0) - M(0, 1);
x = M(0, 2) + M(2, 0);
y = M(1, 2) + M(2, 1);
z = T(1) - (trace - 2 * M(2, 2));
}
// Create a quantity q (which is not yet a unit quaternion).
// Note: Eigen's Quaternion constructor does not normalize.
return Eigen::Quaternion<T>(w, x, y, z);
}
// Refer to the same-named method above for comments and details about the
// algorithm being used, the meaning of the branches, etc. This method is
// identical except that the if-elseif chain is replaced with a symbolic-
// conditional formulation.
//
// N.B. Keep the math in this method in sync with the other specialization,
// immediately above.
template <typename S = T>
static std::enable_if_t<!scalar_predicate<S>::is_bool, Eigen::Quaternion<S>>
RotationMatrixToUnnormalizedQuaternion(
const Eigen::Ref<const Matrix3<S>>& M) {
const T M00 = M(0, 0); const T M01 = M(0, 1); const T M02 = M(0, 2);
const T M10 = M(1, 0); const T M11 = M(1, 1); const T M12 = M(1, 2);
const T M20 = M(2, 0); const T M21 = M(2, 1); const T M22 = M(2, 2);
const T trace = M00 + M11 + M22;
auto if_then_else_vec4 = [](
const boolean<T>& f_cond,
const Vector4<T>& e_then,
const Vector4<T>& e_else) -> Vector4<T> {
return Vector4<T>(
if_then_else(f_cond, e_then[0], e_else[0]),
if_then_else(f_cond, e_then[1], e_else[1]),
if_then_else(f_cond, e_then[2], e_else[2]),
if_then_else(f_cond, e_then[3], e_else[3]));
};
const Vector4<T> wxyz =
if_then_else_vec4(trace >= M00 && trace >= M11 && trace >= M22, {
T(1) + trace,
M21 - M12,
M02 - M20,
M10 - M01,
}, if_then_else_vec4(M00 >= M11 && M00 >= M22, {
M21 - M12,
T(1) - (trace - 2 * M00),
M01 + M10,
M02 + M20,
}, if_then_else_vec4(M11 >= M22, {
M02 - M20,
M01 + M10,
T(1) - (trace - 2 * M11),
M12 + M21,
}, /* else */ {
M10 - M01,
M02 + M20,
M12 + M21,
T(1) - (trace - 2 * M22),
})));
return Eigen::Quaternion<T>(wxyz(0), wxyz(1), wxyz(2), wxyz(3));
}
// Constructs a 3x3 rotation matrix from a Quaternion.
// @param[in] quaternion a quaternion which may or may not have unit length.
// @param[in] two_over_norm_squared is supplied by the calling method and is
// usually pre-computed as `2 / quaternion.squaredNorm()`. If `quaternion`
// has already been normalized [`quaternion.norm() = 1`] or there is a reason
// (unlikely) that the calling method determines that normalization is
// unwanted, the calling method should just past `two_over_norm_squared = 2`.
// @internal The cost of Eigen's quaternion.toRotationMatrix() is 12 adds and
// 12 multiplies. This method also costs 12 adds and 12 multiplies, but
// has a provision for an efficient algorithm for always calculating an
// orthogonal rotation matrix (whereas Eigen's algorithm does not).
static Matrix3<T> QuaternionToRotationMatrix(
const Eigen::Quaternion<T>& quaternion, const T& two_over_norm_squared) {
Matrix3<T> m;
const T w = quaternion.w();
const T x = quaternion.x();
const T y = quaternion.y();
const T z = quaternion.z();
const T sx = two_over_norm_squared * x; // scaled x-value.
const T sy = two_over_norm_squared * y; // scaled y-value.
const T sz = two_over_norm_squared * z; // scaled z-value.
const T swx = sx * w;
const T swy = sy * w;
const T swz = sz * w;
const T sxx = sx * x;
const T sxy = sy * x;
const T sxz = sz * x;
const T syy = sy * y;
const T syz = sz * y;
const T szz = sz * z;
m.coeffRef(0, 0) = T(1) - syy - szz;
m.coeffRef(0, 1) = sxy - swz;
m.coeffRef(0, 2) = sxz + swy;
m.coeffRef(1, 0) = sxy + swz;
m.coeffRef(1, 1) = T(1) - sxx - szz;
m.coeffRef(1, 2) = syz - swx;
m.coeffRef(2, 0) = sxz - swy;
m.coeffRef(2, 1) = syz + swx;
m.coeffRef(2, 2) = T(1) - sxx - syy;
return m;
}
// Stores the underlying rotation matrix relating two frames (e.g. A and B).
// For speed, `R_AB_` is uninitialized (public constructors set its value).
Matrix3<T> R_AB_;
};
/// Abbreviation (alias/typedef) for a RotationMatrix double scalar type.
/// @relates RotationMatrix
using RotationMatrixd = RotationMatrix<double>;
/// Projects an approximate 3 x 3 rotation matrix M onto an orthonormal matrix R
/// so that R is a rotation matrix associated with a angle-axis rotation by an
/// angle θ about a vector direction `axis`, with `angle_lb <= θ <= angle_ub`.
/// @tparam Derived A 3 x 3 matrix
/// @param[in] M the matrix to be projected.
/// @param[in] axis vector direction associated with angle-axis rotation for R.
/// axis can be a non-unit vector, but cannot be the zero vector.
/// @param[in] angle_lb the lower bound of the rotation angle θ.
/// @param[in] angle_ub the upper bound of the rotation angle θ.
/// @return Rotation angle θ of the projected matrix, angle_lb <= θ <= angle_ub
/// @throws std::runtime_error if M is not a 3 x 3 matrix or if
/// axis is the zero vector or if angle_lb > angle_ub.
/// @note This method is useful for reconstructing a rotation matrix for a
/// revolute joint with joint limits.
/// @note This can be formulated as an optimization problem
/// <pre>
/// min_θ trace((R - M)ᵀ*(R - M))
/// subject to R = I + sinθ * A + (1 - cosθ) * A² (1)
/// angle_lb <= θ <= angle_ub
/// </pre>
/// where A is the cross product matrix of a = axis / axis.norm() = [a₁, a₂, a₃]
/// <pre>
/// A = [ 0 -a₃ a₂]
/// [ a₃ 0 -a₁]
/// [-a₂ a₁ 0 ]
/// </pre>
/// Equation (1) is the Rodriguez Formula that computes the rotation matrix R
/// from the angle-axis rotation with angle θ and vector direction `axis`.
/// For details, see http://mathworld.wolfram.com/RodriguesRotationFormula.html
/// The objective function can be simplified as
/// <pre>
/// max_θ trace(Rᵀ * M + Mᵀ * R)
/// </pre>
/// By substituting the matrix `R` with the angle-axis representation, the
/// optimization problem is formulated as
/// <pre>
/// max_θ sinθ * trace(Aᵀ*M) - cosθ * trace(Mᵀ * A²)
/// subject to angle_lb <= θ <= angle_ub
/// </pre>
/// By introducing α = atan2(-trace(Mᵀ * A²), trace(Aᵀ*M)), we can compute the
/// optimal θ as
/// <pre>
/// θ = π/2 + 2kπ - α, if angle_lb <= π/2 + 2kπ - α <= angle_ub, k ∈ integers
/// else
/// θ = angle_lb, if sin(angle_lb + α) >= sin(angle_ub + α)
/// θ = angle_ub, if sin(angle_lb + α) < sin(angle_ub + α)
/// </pre>
/// @see GlobalInverseKinematics for an usage of this function.
template <typename Derived>
double ProjectMatToRotMatWithAxis(const Eigen::MatrixBase<Derived>& M,
const Eigen::Vector3d& axis,
const double angle_lb,
const double angle_ub) {
using Scalar = typename Derived::Scalar;
if (M.rows() != 3 || M.cols() != 3) {
throw std::runtime_error("The input matrix should be of size 3 x 3.");
}