forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
branch_and_bound.cc
757 lines (715 loc) · 30 KB
/
branch_and_bound.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
#include "drake/solvers/branch_and_bound.h"
#include <algorithm>
#include <limits>
#include <vector>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include "drake/common/unused.h"
#include "drake/solvers/choose_best_solver.h"
#include "drake/solvers/gurobi_solver.h"
#include "drake/solvers/scs_solver.h"
namespace drake {
namespace solvers {
/** Determines if the mathematical program has binary variables.
*/
bool MathProgHasBinaryVariables(const MathematicalProgram& prog) {
for (int i = 0; i < prog.num_vars(); ++i) {
if (prog.decision_variable(i).get_type() ==
symbolic::Variable::Type::BINARY) {
return true;
}
}
return false;
}
MixedIntegerBranchAndBoundNode::MixedIntegerBranchAndBoundNode(
const MathematicalProgram& prog,
const std::list<symbolic::Variable>& binary_variables,
const SolverId& solver_id)
: prog_{prog.Clone()},
prog_result_{std::make_unique<MathematicalProgramResult>()},
left_child_{nullptr},
right_child_{nullptr},
parent_{nullptr},
fixed_binary_variable_{},
fixed_binary_value_{-1},
remaining_binary_variables_{binary_variables},
solution_result_{SolutionResult::kUnknownError},
optimal_solution_is_integral_{OptimalSolutionIsIntegral::kUnknown},
solver_id_{solver_id} {
// Check if there are still binary variables.
DRAKE_ASSERT(!MathProgHasBinaryVariables(*prog_));
// Set Gurobi DualReductions to 0, to differentiate infeasible from unbounded.
prog_->SetSolverOption(GurobiSolver::id(), "DualReductions", 0);
}
bool MixedIntegerBranchAndBoundNode::IsRoot() const {
return parent_ == nullptr;
}
namespace {
// Replaces the variables bound with the constraint or cost with new variables.
template <typename Constraint>
Binding<Constraint> ReplaceBoundVariables(
const Binding<Constraint>& binding,
const std::unordered_map<symbolic::Variable::Id, symbolic::Variable>&
map_old_vars_to_new_vars) {
const auto& old_bound_vars = binding.variables();
VectorXDecisionVariable new_bound_vars(old_bound_vars.rows());
for (int i = 0; i < new_bound_vars.rows(); ++i) {
new_bound_vars(i) = map_old_vars_to_new_vars.at(old_bound_vars(i).get_id());
}
return Binding<Constraint>(binding.evaluator(), new_bound_vars);
}
// Adds a vector of costs to a mathematical program.
template <typename Cost>
void AddVectorOfCostsToProgram(
const std::vector<Binding<Cost>>& costs,
const std::unordered_map<symbolic::Variable::Id, symbolic::Variable>&
map_old_vars_to_new_vars,
MathematicalProgram* prog) {
for (const auto& cost : costs) {
prog->AddCost(ReplaceBoundVariables(cost, map_old_vars_to_new_vars));
}
}
// Adds a vector of constraints to a mathematical program.
template <typename Constraint>
void AddVectorOfConstraintsToProgram(
const std::vector<Binding<Constraint>>& constraints,
const std::unordered_map<symbolic::Variable::Id, symbolic::Variable>&
map_old_vars_to_new_vars,
MathematicalProgram* prog) {
for (const auto& constraint : constraints) {
prog->AddConstraint(
ReplaceBoundVariables(constraint, map_old_vars_to_new_vars));
}
}
SolutionResult SolveProgramWithSolver(const MathematicalProgram& prog,
const SolverId& solver_id,
MathematicalProgramResult* result) {
std::unique_ptr<SolverInterface> solver = MakeSolver(solver_id);
DRAKE_ASSERT(solver.get());
solver->Solve(prog, {}, {}, result);
return result->get_solution_result();
}
} // namespace
std::pair<std::unique_ptr<MixedIntegerBranchAndBoundNode>,
std::unordered_map<symbolic::Variable::Id, symbolic::Variable>>
MixedIntegerBranchAndBoundNode::ConstructRootNode(
const MathematicalProgram& prog, const SolverId& solver_id) {
// Construct a new optimization program, same as prog, but relaxing the binary
// constraint to 0 ≤ y ≤ 1.
MathematicalProgram new_prog;
// First check the decision variables of prog. Construct a new set of decision
// variables with the same names as those in prog, but with different IDs.
const auto& prog_vars = prog.decision_variables();
VectorXDecisionVariable new_vars(prog_vars.rows());
std::unordered_map<symbolic::Variable::Id, symbolic::Variable>
map_old_vars_to_new_vars;
std::vector<int> binary_variable_indices{};
for (int i = 0; i < prog_vars.rows(); ++i) {
switch (prog_vars(i).get_type()) {
case symbolic::Variable::Type::CONTINUOUS: {
// If the prog_vars(i) is of type CONTINUOUS, then new_vars(i) is also
// CONTINUOUS.
new_vars(i) = symbolic::Variable(prog_vars(i).get_name(),
symbolic::Variable::Type::CONTINUOUS);
map_old_vars_to_new_vars.emplace_hint(
map_old_vars_to_new_vars.end(), prog_vars(i).get_id(), new_vars(i));
break;
}
case symbolic::Variable::Type::BINARY: {
// If program_vars(i) is of type BINARY, then new_vars(i) is CONTINUOUS
// instead. We will later add the constraint 0 ≤ new_vars(i) ≤ 1
new_vars(i) = symbolic::Variable(prog_vars(i).get_name(),
symbolic::Variable::Type::CONTINUOUS);
map_old_vars_to_new_vars.emplace_hint(
map_old_vars_to_new_vars.end(), prog_vars(i).get_id(), new_vars(i));
binary_variable_indices.push_back(i);
break;
}
default: {
throw std::runtime_error(
"This variable type is not supported in branch and bound.");
}
}
}
new_prog.AddDecisionVariables(new_vars);
if (binary_variable_indices.empty()) {
throw std::runtime_error(
"No binary variable found in the optimization program.\n");
}
const int num_binary_variables = binary_variable_indices.size();
VectorXDecisionVariable binary_variables(num_binary_variables);
for (int i = 0; i < num_binary_variables; ++i) {
binary_variables(i) = new_vars(binary_variable_indices[i]);
}
new_prog.AddBoundingBoxConstraint(Eigen::VectorXd::Zero(num_binary_variables),
Eigen::VectorXd::Ones(num_binary_variables),
binary_variables);
// Add the indeterminates
new_prog.AddIndeterminates(prog.indeterminates());
// Now add all the costs in prog to new_prog.
AddVectorOfCostsToProgram(prog.generic_costs(), map_old_vars_to_new_vars,
&new_prog);
AddVectorOfCostsToProgram(prog.linear_costs(), map_old_vars_to_new_vars,
&new_prog);
AddVectorOfCostsToProgram(prog.quadratic_costs(), map_old_vars_to_new_vars,
&new_prog);
// Now add all the constraints in prog to new_prog.
// TODO(hongkai.dai): Make sure that all constraints stored in
// MathematicalProgram are added. In the future, if we add more constraint
// types to MathematicalProgram, we need to add these constraints to new_prog
// here as well. One solution is to add a method in MathematicalProgram, to
// get all costs and constraints.
AddVectorOfConstraintsToProgram(prog.generic_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.linear_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.linear_equality_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.bounding_box_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.lorentz_cone_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.rotated_lorentz_cone_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.positive_semidefinite_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.linear_matrix_inequality_constraints(),
map_old_vars_to_new_vars, &new_prog);
AddVectorOfConstraintsToProgram(prog.linear_complementarity_constraints(),
map_old_vars_to_new_vars, &new_prog);
// Set the initial guess.
new_prog.SetInitialGuessForAllVariables(prog.initial_guess());
// TODO(hongkai.dai) Set the solver options as well.
std::list<symbolic::Variable> binary_variables_list;
for (int i = 0; i < binary_variables.rows(); ++i) {
binary_variables_list.push_back(binary_variables(i));
}
MixedIntegerBranchAndBoundNode* node = new MixedIntegerBranchAndBoundNode(
new_prog, binary_variables_list, solver_id);
node->solution_result_ = SolveProgramWithSolver(
*node->prog_, solver_id, node->prog_result_.get());
if (node->solution_result_ == SolutionResult::kSolutionFound) {
node->CheckOptimalSolutionIsIntegral();
}
return std::make_pair(std::unique_ptr<MixedIntegerBranchAndBoundNode>(node),
map_old_vars_to_new_vars);
}
void MixedIntegerBranchAndBoundNode::CheckOptimalSolutionIsIntegral() {
// Check if the solution to the remaining binary variables are all either
// 0 or 1.
if (solution_result_ != SolutionResult::kSolutionFound) {
throw std::runtime_error("The program does not have an optimal solution.");
}
for (const auto& var : remaining_binary_variables_) {
const double binary_var_val{prog_result_->GetSolution(var)};
if (std::isnan(binary_var_val)) {
throw std::runtime_error(
"The solution contains NAN, either the problem is not solved "
"yet, or the problem is infeasible, unbounded, or encountered"
"numerical errors during solve.");
}
if (binary_var_val > integral_tol_ && binary_var_val < 1 - integral_tol_) {
optimal_solution_is_integral_ = OptimalSolutionIsIntegral::kFalse;
return;
}
}
optimal_solution_is_integral_ = OptimalSolutionIsIntegral::kTrue;
}
bool MixedIntegerBranchAndBoundNode::optimal_solution_is_integral() const {
if (solution_result_ != SolutionResult::kSolutionFound) {
throw std::runtime_error("The optimal solution is not found.");
}
switch (optimal_solution_is_integral_) {
case OptimalSolutionIsIntegral::kTrue: {
return true;
}
case OptimalSolutionIsIntegral::kFalse: {
return false;
}
case OptimalSolutionIsIntegral::kUnknown: {
throw std::runtime_error(
"Call CheckOptimalSolutionIsIntegral() before calling this "
"function.");
}
}
DRAKE_UNREACHABLE();
}
bool IsVariableInList(const std::list<symbolic::Variable>& variable_list,
const symbolic::Variable& variable) {
for (const auto& var : variable_list) {
if (var.equal_to(variable)) {
return true;
}
}
return false;
}
void MixedIntegerBranchAndBoundNode::FixBinaryVariable(
const symbolic::Variable& binary_variable, bool binary_value) {
// Add constraint y == 0 or y == 1.
prog_->AddBoundingBoxConstraint(static_cast<double>(binary_value),
static_cast<double>(binary_value),
binary_variable);
// Remove binary_variable from remaining_binary_variables_
bool found_binary_variable = false;
for (auto it = remaining_binary_variables_.begin();
it != remaining_binary_variables_.end(); ++it) {
if (it->equal_to(binary_variable)) {
found_binary_variable = true;
remaining_binary_variables_.erase(it);
break;
}
}
if (!found_binary_variable) {
std::ostringstream oss;
oss << binary_variable
<< " is not a remaining binary variable in this node.\n";
throw std::runtime_error(oss.str());
}
// Set fixed_binary_variable_ and fixed_binary_value_.
fixed_binary_variable_ = binary_variable;
fixed_binary_value_ = binary_value;
}
void MixedIntegerBranchAndBoundNode::Branch(
const symbolic::Variable& binary_variable) {
left_child_.reset(new MixedIntegerBranchAndBoundNode(
*prog_, remaining_binary_variables_, solver_id_));
right_child_.reset(new MixedIntegerBranchAndBoundNode(
*prog_, remaining_binary_variables_, solver_id_));
left_child_->FixBinaryVariable(binary_variable, 0);
right_child_->FixBinaryVariable(binary_variable, 1);
left_child_->parent_ = this;
right_child_->parent_ = this;
left_child_->solution_result_ = SolveProgramWithSolver(
*left_child_->prog_, left_child_->solver_id_,
left_child_->prog_result_.get());
right_child_->solution_result_ = SolveProgramWithSolver(
*right_child_->prog_, right_child_->solver_id_,
right_child_->prog_result_.get());
if (left_child_->solution_result_ == SolutionResult::kSolutionFound) {
left_child_->CheckOptimalSolutionIsIntegral();
}
if (right_child_->solution_result_ == SolutionResult::kSolutionFound) {
right_child_->CheckOptimalSolutionIsIntegral();
}
}
MixedIntegerBranchAndBound::MixedIntegerBranchAndBound(
const MathematicalProgram& prog, const SolverId& solver_id)
: root_{nullptr},
map_old_vars_to_new_vars_{},
best_upper_bound_{std::numeric_limits<double>::infinity()},
best_lower_bound_{-std::numeric_limits<double>::infinity()},
solutions_{} {
std::tie(root_, map_old_vars_to_new_vars_) =
MixedIntegerBranchAndBoundNode::ConstructRootNode(prog, solver_id);
if (root_->solution_result() == SolutionResult::kSolutionFound) {
best_lower_bound_ = root_->prog_result()->get_optimal_cost();
// If an integral solution is found, then update the best solutions,
// together with the best upper bound.
if (root_->optimal_solution_is_integral()) {
UpdateIntegralSolution(
root_->prog_result()->GetSolution(
root_->prog()->decision_variables()),
root_->prog_result()->get_optimal_cost());
}
}
}
SolutionResult MixedIntegerBranchAndBound::Solve() {
// Call back on the root node.
NodeCallback(*root_);
// First check the status of the root node. If the root node is infeasible,
// then the MIP is infeasible.
if (root_->solution_result() == SolutionResult::kInfeasibleConstraints) {
return SolutionResult::kInfeasibleConstraints;
}
if (search_integral_solution_by_rounding_) {
SearchIntegralSolutionByRounding(*root_);
}
if (HasConverged()) {
return SolutionResult::kSolutionFound;
}
// If the optimal solution to the root node is not integral, do some
// post-processing on the non-integral solution, and try to find an integral
// solution of the MIP (but not necessarily optimal).
// This is done here (rather than when the root node is solved in the
// constructor), because the strategy to search for the integral
// solution can be specified after the constructor call.
if (root_->solution_result() == SolutionResult::kSolutionFound &&
!root_->optimal_solution_is_integral()) {
SearchIntegralSolutionByRounding(*root_);
}
MixedIntegerBranchAndBoundNode* branching_node = PickBranchingNode();
while (branching_node) {
// Found a branching node, branch on this node. If no branching node is
// found, then every leaf node is fathomed, the branch-and-bound process
// should terminate.
// TODO(hongkai.dai) We might need to have a function that picks the
// branching node together with the branching variable simultaneously.
const symbolic::Variable* branching_variable =
PickBranchingVariable(*branching_node);
BranchAndUpdate(branching_node, *branching_variable);
if (HasConverged()) {
return SolutionResult::kSolutionFound;
}
branching_node = PickBranchingNode();
}
// No node to branch.
if (best_lower_bound_ == -std::numeric_limits<double>::infinity()) {
return SolutionResult::kUnbounded;
}
if (best_lower_bound_ == std::numeric_limits<double>::infinity()) {
return SolutionResult::kInfeasibleConstraints;
}
throw std::runtime_error(
"Unknown result. The problem is not optimal, infeasible, nor unbounded.");
}
void MixedIntegerBranchAndBound::NodeCallback(
const MixedIntegerBranchAndBoundNode& node) {
if (node_callback_userfun_ != nullptr) {
node_callback_userfun_(node, this);
}
}
double MixedIntegerBranchAndBound::GetOptimalCost() const {
if (solutions_.empty()) {
throw std::runtime_error(
"The branch-and-bound process did not find an optimal solution.");
}
return solutions_.begin()->first;
}
double MixedIntegerBranchAndBound::GetSubOptimalCost(
int nth_suboptimal_cost) const {
if (nth_suboptimal_cost < 0 ||
nth_suboptimal_cost >= static_cast<int>(solutions().size()) - 1) {
throw std::runtime_error(
fmt::format("Cannot access {}'th sub-optimal cost. The branch-and-"
"bound process only found {} solution(s).",
nth_suboptimal_cost, solutions().size()));
}
auto it = solutions().begin();
++it;
for (int suboptimal_cost_count = 0;
suboptimal_cost_count < nth_suboptimal_cost; ++suboptimal_cost_count) {
++it;
}
return it->first;
}
double MixedIntegerBranchAndBound::GetSolution(
const symbolic::Variable& mip_var, int nth_best_solution) const {
if (nth_best_solution < 0 ||
nth_best_solution >= static_cast<int>(solutions().size())) {
throw std::runtime_error(
fmt::format("Cannot access {}'th integral solution. The "
"branch-and-bound process only found {} solution(s).",
nth_best_solution, solutions().size()));
}
const int variable_index =
root_->prog()->FindDecisionVariableIndex(GetNewVariable(mip_var));
auto it = solutions().begin();
for (int best_solution_count = 0; best_solution_count < nth_best_solution;
++best_solution_count) {
++it;
}
return it->second(variable_index);
}
const symbolic::Variable& MixedIntegerBranchAndBound::GetNewVariable(
const symbolic::Variable& old_variable) const {
const auto it = map_old_vars_to_new_vars_.find(old_variable.get_id());
if (it == map_old_vars_to_new_vars_.end()) {
std::ostringstream oss;
oss << old_variable
<< " is not a variable in the original mixed-integer problem.\n";
throw std::runtime_error(oss.str());
}
return it->second;
}
MixedIntegerBranchAndBoundNode* MixedIntegerBranchAndBound::PickBranchingNode()
const {
switch (node_selection_method_) {
case NodeSelectionMethod::kMinLowerBound: {
return PickMinLowerBoundNode();
}
case NodeSelectionMethod::kDepthFirst: {
return PickDepthFirstNode();
}
case NodeSelectionMethod::kUserDefined: {
if (node_selection_userfun_ != nullptr) {
auto node = node_selection_userfun_(*this);
if (!node->IsLeaf() || IsLeafNodeFathomed(*node)) {
throw std::runtime_error(
"The user should pick an un-fathomed leaf node for branching.");
}
return node_selection_userfun_(*this);
} else {
throw std::runtime_error(
"The user defined function should not be null, call "
"SetUserDefinedVariableSelectionFunction to provide a user defined "
"function for selecting the branching node.");
}
}
}
DRAKE_UNREACHABLE();
}
namespace {
// Pick the non-fathomed leaf node in the tree with the smallest optimal cost.
MixedIntegerBranchAndBoundNode* PickMinLowerBoundNodeInSubTree(
const MixedIntegerBranchAndBound& bnb,
const MixedIntegerBranchAndBoundNode& sub_tree_root) {
if (sub_tree_root.IsLeaf()) {
if (bnb.IsLeafNodeFathomed(sub_tree_root)) {
return nullptr;
}
return const_cast<MixedIntegerBranchAndBoundNode*>(&sub_tree_root);
} else {
MixedIntegerBranchAndBoundNode* left_min_lower_bound_node =
PickMinLowerBoundNodeInSubTree(bnb, *(sub_tree_root.left_child()));
MixedIntegerBranchAndBoundNode* right_min_lower_bound_node =
PickMinLowerBoundNodeInSubTree(bnb, *(sub_tree_root.right_child()));
if (left_min_lower_bound_node && right_min_lower_bound_node) {
return (left_min_lower_bound_node->prog_result()->get_optimal_cost() <
right_min_lower_bound_node->prog_result()->get_optimal_cost())
? left_min_lower_bound_node
: right_min_lower_bound_node;
} else if (left_min_lower_bound_node) {
return left_min_lower_bound_node;
} else if (right_min_lower_bound_node) {
return right_min_lower_bound_node;
}
return nullptr;
}
}
MixedIntegerBranchAndBoundNode* PickDepthFirstNodeInSubTree(
const MixedIntegerBranchAndBound& bnb,
const MixedIntegerBranchAndBoundNode& sub_tree_root) {
if (sub_tree_root.IsLeaf()) {
if (bnb.IsLeafNodeFathomed(sub_tree_root)) {
return nullptr;
}
return const_cast<MixedIntegerBranchAndBoundNode*>(&sub_tree_root);
} else {
MixedIntegerBranchAndBoundNode* left_deepest_node =
PickDepthFirstNodeInSubTree(bnb, *(sub_tree_root.left_child()));
MixedIntegerBranchAndBoundNode* right_deepest_node =
PickDepthFirstNodeInSubTree(bnb, *(sub_tree_root.right_child()));
if (left_deepest_node && right_deepest_node) {
return left_deepest_node->remaining_binary_variables().size() >
right_deepest_node->remaining_binary_variables().size()
? right_deepest_node
: left_deepest_node;
} else if (left_deepest_node) {
return left_deepest_node;
} else if (right_deepest_node) {
return right_deepest_node;
}
return nullptr;
}
}
double BestLowerBoundInSubTree(
const MixedIntegerBranchAndBound& bnb,
const MixedIntegerBranchAndBoundNode& sub_tree_root) {
if (sub_tree_root.IsLeaf()) {
if (bnb.IsLeafNodeFathomed(sub_tree_root)) {
switch (sub_tree_root.solution_result()) {
case SolutionResult::kSolutionFound:
return sub_tree_root.prog_result()->get_optimal_cost();
case SolutionResult::kUnbounded:
return -std::numeric_limits<double>::infinity();
case SolutionResult::kInfeasibleConstraints:
return std::numeric_limits<double>::infinity();
default:
throw std::runtime_error(
"Cannot obtain the best lower bound for this fathomed leaf "
"node.");
}
}
return sub_tree_root.prog_result()->get_optimal_cost();
} else {
const double left_best_lower_bound =
BestLowerBoundInSubTree(bnb, *(sub_tree_root.left_child()));
const double right_best_lower_bound =
BestLowerBoundInSubTree(bnb, *(sub_tree_root.right_child()));
return left_best_lower_bound < right_best_lower_bound
? left_best_lower_bound
: right_best_lower_bound;
}
}
const symbolic::Variable* PickMostOrLeastAmbivalentAsBranchingVariable(
const MixedIntegerBranchAndBoundNode& node,
MixedIntegerBranchAndBound::VariableSelectionMethod
variable_selection_method) {
DRAKE_ASSERT(variable_selection_method ==
MixedIntegerBranchAndBound::VariableSelectionMethod::
kMostAmbivalent ||
variable_selection_method ==
MixedIntegerBranchAndBound::VariableSelectionMethod::
kLeastAmbivalent);
if (node.solution_result() == SolutionResult::kSolutionFound) {
const double sign = variable_selection_method ==
MixedIntegerBranchAndBound::
VariableSelectionMethod::kMostAmbivalent
? 1
: -1;
double value = sign * std::numeric_limits<double>::infinity();
const symbolic::Variable* return_var{nullptr};
for (const auto& var : node.remaining_binary_variables()) {
const double var_value = node.prog_result()->GetSolution(var);
const double var_value_to_half = std::abs(var_value - 0.5);
if (sign * var_value_to_half < sign * value) {
value = var_value_to_half;
return_var = &var;
}
}
return return_var;
} else if (node.solution_result() == SolutionResult::kUnbounded) {
return &(node.remaining_binary_variables().front());
}
throw std::runtime_error(
"The problem is neither optimal nor unbounded. Cannot pick a branching "
"variable.");
}
} // namespace
MixedIntegerBranchAndBoundNode*
MixedIntegerBranchAndBound::PickMinLowerBoundNode() const {
return PickMinLowerBoundNodeInSubTree(*this, *root_);
}
MixedIntegerBranchAndBoundNode* MixedIntegerBranchAndBound::PickDepthFirstNode()
const {
// The deepest node has the largest number of fixed binary variables.
return PickDepthFirstNodeInSubTree(*this, *root_);
}
const symbolic::Variable* MixedIntegerBranchAndBound::PickBranchingVariable(
const MixedIntegerBranchAndBoundNode& node) const {
switch (variable_selection_method_) {
case VariableSelectionMethod::kMostAmbivalent:
case VariableSelectionMethod::kLeastAmbivalent:
return PickMostOrLeastAmbivalentAsBranchingVariable(
node, variable_selection_method_);
case VariableSelectionMethod::kUserDefined:
if (variable_selection_userfun_) {
return variable_selection_userfun_(node);
}
throw std::runtime_error(
"The user defined function cannot be null. Call "
"SetUserDefinedVariableSelectionFunction to provide the user-defined "
"function for selecting the branching variable.");
}
DRAKE_UNREACHABLE();
}
bool MixedIntegerBranchAndBound::IsLeafNodeFathomed(
const MixedIntegerBranchAndBoundNode& leaf_node) const {
if (!leaf_node.IsLeaf()) {
throw std::runtime_error("Not a leaf node.");
}
if (leaf_node.solution_result() == SolutionResult::kInfeasibleConstraints) {
return true;
}
if (leaf_node.prog_result()->get_optimal_cost() > best_upper_bound_) {
return true;
}
if (leaf_node.solution_result() == SolutionResult::kSolutionFound &&
leaf_node.optimal_solution_is_integral()) {
return true;
}
if (leaf_node.remaining_binary_variables().empty()) {
return true;
}
return false;
}
void MixedIntegerBranchAndBound::BranchAndUpdate(
MixedIntegerBranchAndBoundNode* node,
const symbolic::Variable& branching_variable) {
node->Branch(branching_variable);
// Update the best lower and upper bounds.
// The best lower bound is the minimal among all the optimal costs of the
// non-fathomed leaf nodes.
best_lower_bound_ = BestLowerBoundInSubTree(*this, *root_);
// If either the left or the right children finds integral solution, then
// we can potentially update the best upper bound, and insert the solutions
// to the list solutions_;
for (auto& child : {node->left_child(), node->right_child()}) {
if (child->solution_result() == SolutionResult::kSolutionFound &&
child->optimal_solution_is_integral()) {
const double child_node_optimal_cost =
child->prog_result()->get_optimal_cost();
const Eigen::VectorXd x_sol =
child->prog_result()->GetSolution(
child->prog()->decision_variables());
UpdateIntegralSolution(x_sol, child_node_optimal_cost);
}
if (search_integral_solution_by_rounding_) {
SearchIntegralSolutionByRounding(*child);
}
NodeCallback(*child);
}
}
void MixedIntegerBranchAndBound::UpdateIntegralSolution(
const Eigen::Ref<const Eigen::VectorXd>& solution, double cost) {
// First make sure that this solution has not been found before. The solution
// could be found already when we search the integral solution in each node
// by rounding the un-fixed binary variables, or by some user callback
// procedure.
bool found_match = false;
const double tol{1E-6};
for (const auto& cost_solution : solutions_) {
// The same solution should have the same cost, up to some numerical
// tolerance.
found_match = std::abs(cost_solution.first - cost) < tol &&
(cost_solution.second - solution).cwiseAbs().maxCoeff() < tol;
if (found_match) {
break;
}
}
if (!found_match) {
solutions_.emplace(cost, solution);
if (static_cast<int>(solutions_.size()) > max_num_solutions_) {
auto it = solutions_.end();
--it;
solutions_.erase(it);
}
best_upper_bound_ = std::min(best_upper_bound_, solutions_.begin()->first);
}
}
bool MixedIntegerBranchAndBound::HasConverged() const {
if (best_upper_bound_ - best_lower_bound_ <= absolute_gap_tol_) {
return true;
}
if ((best_upper_bound_ - best_lower_bound_) / std::abs(best_lower_bound_) <=
relative_gap_tol_) {
return true;
}
return false;
}
void MixedIntegerBranchAndBound::SearchIntegralSolutionByRounding(
const MixedIntegerBranchAndBoundNode& node) {
// Only searches integral solution by rounding, if the optimization program
// in this node has an optimal solution, and that solution is non-integral.
if (node.solution_result() == SolutionResult::kSolutionFound &&
!node.optimal_solution_is_integral()) {
// Create a new program that fix the remaining binary variables to either 0
// or 1, and solve for the continuous variables. If this optimization
// problem is feasible, then the optimal solution is a feasible
// solution to the MIP, and we get an upper bound on the MIP optimal cost.
auto new_prog = node.prog()->Clone();
// Go through each remaining binary variables, and constrain them to either
// 0 or 1 by rounding the solution to the integer.
for (const auto& remaining_binary_variable :
node.remaining_binary_variables()) {
// Notice that roundoff_integer_val is of type double here. This is
// because AddBoundingBoxConstraint(...) requires bounds of type double.
const double roundoff_integer_val =
std::round(node.prog_result()->GetSolution(
remaining_binary_variable));
new_prog->AddBoundingBoxConstraint(roundoff_integer_val,
roundoff_integer_val,
remaining_binary_variable);
}
MathematicalProgramResult result;
SolveProgramWithSolver(*new_prog, node.solver_id(), &result);
if (result.is_success()) {
// Found integral solution.
UpdateIntegralSolution(
result.GetSolution(new_prog->decision_variables()),
result.get_optimal_cost());
}
}
}
} // namespace solvers
} // namespace drake