forked from chenyuntc/simple-faster-rcnn-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
132 lines (111 loc) · 5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from __future__ import absolute_import
# though cupy is not used but without this line, it raise errors...
import cupy as cp
import os
import ipdb
import matplotlib
from tqdm import tqdm
from utils.config import opt
from data.dataset import Dataset, TestDataset, inverse_normalize
from model import FasterRCNNVGG16
from torch.utils import data as data_
from trainer import FasterRCNNTrainer
from utils import array_tool as at
from utils.vis_tool import visdom_bbox
from utils.eval_tool import eval_detection_voc
# fix for ulimit
# https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (20480, rlimit[1]))
matplotlib.use('agg')
def eval(dataloader, faster_rcnn, test_num=10000):
pred_bboxes, pred_labels, pred_scores = list(), list(), list()
gt_bboxes, gt_labels, gt_difficults = list(), list(), list()
for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_) in tqdm(enumerate(dataloader)):
sizes = [sizes[0][0].item(), sizes[1][0].item()]
pred_bboxes_, pred_labels_, pred_scores_ = faster_rcnn.predict(imgs, [sizes])
gt_bboxes += list(gt_bboxes_.numpy())
gt_labels += list(gt_labels_.numpy())
gt_difficults += list(gt_difficults_.numpy())
pred_bboxes += pred_bboxes_
pred_labels += pred_labels_
pred_scores += pred_scores_
if ii == test_num: break
result = eval_detection_voc(
pred_bboxes, pred_labels, pred_scores,
gt_bboxes, gt_labels, gt_difficults,
use_07_metric=True)
return result
def train(**kwargs):
opt._parse(kwargs)
dataset = Dataset(opt)
print('load data')
dataloader = data_.DataLoader(dataset, \
batch_size=1, \
shuffle=True, \
# pin_memory=True,
num_workers=opt.num_workers)
testset = TestDataset(opt)
test_dataloader = data_.DataLoader(testset,
batch_size=1,
num_workers=opt.test_num_workers,
shuffle=False, \
pin_memory=True
)
faster_rcnn = FasterRCNNVGG16()
print('model construct completed')
trainer = FasterRCNNTrainer(faster_rcnn).cuda()
if opt.load_path:
trainer.load(opt.load_path)
print('load pretrained model from %s' % opt.load_path)
trainer.vis.text(dataset.db.label_names, win='labels')
best_map = 0
lr_ = opt.lr
for epoch in range(opt.epoch):
trainer.reset_meters()
for ii, (img, bbox_, label_, scale) in tqdm(enumerate(dataloader)):
scale = at.scalar(scale)
img, bbox, label = img.cuda().float(), bbox_.cuda(), label_.cuda()
trainer.train_step(img, bbox, label, scale)
if (ii + 1) % opt.plot_every == 0:
if os.path.exists(opt.debug_file):
ipdb.set_trace()
# plot loss
trainer.vis.plot_many(trainer.get_meter_data())
# plot groud truth bboxes
ori_img_ = inverse_normalize(at.tonumpy(img[0]))
gt_img = visdom_bbox(ori_img_,
at.tonumpy(bbox_[0]),
at.tonumpy(label_[0]))
trainer.vis.img('gt_img', gt_img)
# plot predicti bboxes
_bboxes, _labels, _scores = trainer.faster_rcnn.predict([ori_img_], visualize=True)
pred_img = visdom_bbox(ori_img_,
at.tonumpy(_bboxes[0]),
at.tonumpy(_labels[0]).reshape(-1),
at.tonumpy(_scores[0]))
trainer.vis.img('pred_img', pred_img)
# rpn confusion matrix(meter)
trainer.vis.text(str(trainer.rpn_cm.value().tolist()), win='rpn_cm')
# roi confusion matrix
trainer.vis.img('roi_cm', at.totensor(trainer.roi_cm.conf, False).float())
eval_result = eval(test_dataloader, faster_rcnn, test_num=opt.test_num)
trainer.vis.plot('test_map', eval_result['map'])
lr_ = trainer.faster_rcnn.optimizer.param_groups[0]['lr']
log_info = 'lr:{}, map:{},loss:{}'.format(str(lr_),
str(eval_result['map']),
str(trainer.get_meter_data()))
trainer.vis.log(log_info)
if eval_result['map'] > best_map:
best_map = eval_result['map']
best_path = trainer.save(best_map=best_map)
if epoch == 9:
trainer.load(best_path)
trainer.faster_rcnn.scale_lr(opt.lr_decay)
lr_ = lr_ * opt.lr_decay
if epoch == 13:
break
if __name__ == '__main__':
import fire
fire.Fire()