-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwbMemoryManager.cpp
296 lines (248 loc) · 7.8 KB
/
wbMemoryManager.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#ifdef WB_USE_CUSTOM_MALLOC
#include <wb.h>
#include <sys/mman.h>
//
// Memory manager: dynamically allocates memory from
// a fixed pool that is allocated statically at link-time.
//
// Usage: after calling memmgr_init() in your
// initialization routine, just use memmgr_alloc() instead
// of malloc() and memmgr_free() instead of free().
// Naturally, you can use the preprocessor to define
// malloc() and free() as aliases to memmgr_alloc() and
// memmgr_free(). This way the manager will be a drop-in
// replacement for the standard C library allocators, and can
// be useful for debugging memory allocation problems and
// leaks.
//
// Preprocessor flags you can define to customize the
// memory manager:
//
// DEBUG_MEMMGR_FATAL
// Allow printing out a message when allocations fail
//
// DEBUG_MEMMGR_SUPPORT_STATS
// Allow printing out of stats in function
// memmgr_print_stats When this is disabled,
// memmgr_print_stats does nothing.
//
// Note that in production code on an embedded system
// you'll probably want to keep those undefined, because
// they cause printf to be called.
//
// MIN_POOL_ALLOC_QUANTAS
// Internally, the memory manager allocates memory in
// quantas roughly the size of two ulong objects. To
// minimize pool fragmentation in case of multiple allocations
// and deallocations, it is advisable to not allocate
// blocks that are too small.
// This flag sets the minimal ammount of quantas for
// an allocation. If the size of a ulong is 4 and you
// set this flag to 16, the minimal size of an allocation
// will be 4 * 2 * 16 = 128 bytes
// If you have a lot of small allocations, keep this value
// low to conserve memory. If you have mostly large
// allocations, it is best to make it higher, to avoid
// fragmentation.
//
// Notes:
// 1. This memory manager is *not thread safe*. Use it only
// for single thread/task applications.
//
#define DEBUG_MEMMGR_SUPPORT_STATS 1
#define MIN_POOL_ALLOC_QUANTAS 128
typedef ulong Align;
union mem_header_union {
struct {
// Pointer to the next block in the free list
//
union mem_header_union *next;
// Size of the block (in quantas of sizeof(mem_header_t))
//
ulong size;
} s;
// Used to align headers in memory to a boundary
//
Align align_dummy;
};
typedef union mem_header_union mem_header_t;
// Initial empty list
//
static mem_header_t base;
// Start of free list
//
static mem_header_t *freep = 0;
// Static pool for new allocations
//
static byte *pool;
static size_t pool_size;
static ulong pool_free_pos = 0;
void memmgr_free(void *ap);
void memmgr_init(size_t heapsize) {
void *heap = mmap(0, (size_t)heapsize, PROT_READ | PROT_WRITE,
#ifndef __APPLE__
MAP_ANONYMOUS |
#endif /* __APPLE__ */
MAP_SHARED,
-1, 0);
if (heap == MAP_FAILED) {
// Couldn't allocate heap memory.
exit(22);
}
pool = (byte *)heap;
pool_size = heapsize;
base.s.next = 0;
base.s.size = 0;
freep = 0;
pool_free_pos = 0;
}
void wbMemoryManager_new(size_t heapsize) {
memmgr_init(heapsize);
return;
}
void memmgr_print_stats() {
mem_header_t *p;
printf("------ Memory manager stats ------\n\n");
printf("Pool: free_pos = %lu (%lu bytes left)\n\n", pool_free_pos,
pool_size - pool_free_pos);
p = (mem_header_t *)pool;
while (p < (mem_header_t *)(pool + pool_free_pos)) {
printf(" * Addr: 0x%8lu; Size: %8lu\n", (ulong)p, p->s.size);
p += p->s.size;
}
printf("\nFree list:\n\n");
if (freep) {
p = freep;
while (1) {
printf(" * Addr: 0x%8lu; Size: %8lu; Next: 0x%8lu\n", (ulong)p,
p->s.size, (ulong)p->s.next);
p = p->s.next;
if (p == freep)
break;
}
} else {
printf("Empty\n");
}
printf("\n");
}
static mem_header_t *get_mem_from_pool(ulong nquantas) {
ulong total_req_size;
mem_header_t *h;
if (nquantas < MIN_POOL_ALLOC_QUANTAS)
nquantas = MIN_POOL_ALLOC_QUANTAS;
total_req_size = nquantas * sizeof(mem_header_t);
if (pool_free_pos + total_req_size <= pool_size) {
h = (mem_header_t *)(pool + pool_free_pos);
h->s.size = nquantas;
memmgr_free((void *)(h + 1));
pool_free_pos += total_req_size;
} else {
return 0;
}
return freep;
}
// Allocations are done in 'quantas' of header size.
// The search for a free block of adequate size begins at the point 'freep'
// where the last block was found.
// If a too-big block is found, it is split and the tail is returned (this
// way the header of the original needs only to have its size adjusted).
// The pointer returned to the user points to the free space within the block,
// which begins one quanta after the header.
//
void *memmgr_alloc(ulong nbytes, int *err) {
mem_header_t *p;
mem_header_t *prevp;
*err = 0;
// Calculate how many quantas are required: we need enough to house all
// the requested bytes, plus the header. The -1 and +1 are there to make sure
// that if nbytes is a multiple of nquantas, we don't allocate too much
//
ulong nquantas =
(nbytes + sizeof(mem_header_t) - 1) / sizeof(mem_header_t) + 1;
// First alloc call, and no free list yet ? Use 'base' for an initial
// denegerate block of size 0, which points to itself
//
if ((prevp = freep) == 0) {
base.s.next = freep = prevp = &base;
base.s.size = 0;
}
for (p = prevp->s.next;; prevp = p, p = p->s.next) {
// big enough ?
if (p->s.size >= nquantas) {
// exactly ?
if (p->s.size == nquantas) {
// just eliminate this block from the free list by pointing
// its prev's next to its next
//
prevp->s.next = p->s.next;
} else // too big
{
p->s.size -= nquantas;
p += p->s.size;
p->s.size = nquantas;
}
freep = prevp;
return (void *)(p + 1);
}
// Reached end of free list ?
// Try to allocate the block from the pool. If that succeeds,
// get_mem_from_pool adds the new block to the free list and
// it will be found in the following iterations. If the call
// to get_mem_from_pool doesn't succeed, we've run out of
// memory
//
else if (p == freep) {
if ((p = get_mem_from_pool(nquantas)) == 0) {
*err = 1;
return 0;
}
}
}
}
// Scans the free list, starting at freep, looking the the place to insert the
// free block. This is either between two existing blocks or at the end of the
// list. In any case, if the block being freed is adjacent to either neighbor,
// the adjacent blocks are combined.
//
void memmgr_free(void *ap) {
mem_header_t *block;
mem_header_t *p;
// acquire pointer to block header
block = ((mem_header_t *)ap) - 1;
// Find the correct place to place the block in (the free list is sorted by
// address, increasing order)
//
for (p = freep; p && !(block > p && block < p->s.next); p = p->s.next) {
// Since the free list is circular, there is one link where a
// higher-addressed block points to a lower-addressed block.
// This condition checks if the block should be actually
// inserted between them
//
if (p >= p->s.next && (block > p || block < p->s.next))
break;
}
// Try to combine with the higher neighbor
//
if (block + block->s.size == p->s.next) {
block->s.size += p->s.next->s.size;
block->s.next = p->s.next->s.next;
} else {
block->s.next = p->s.next;
}
// Try to combine with the lower neighbor
//
if (p + p->s.size == block) {
p->s.size += block->s.size;
p->s.next = block->s.next;
} else {
p->s.next = block;
}
freep = p;
}
// Find out the allocation size of given block.
// Needed to implement realloc() and similar functions.
ulong memmgr_get_block_size(void *ap) {
mem_header_t *block = ((mem_header_t *)ap) - 1;
return block->s.size;
}
#endif /* WB_USE_CUSTOM_MALLOC */