forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sort.cc
120 lines (110 loc) · 4.44 KB
/
sort.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/sort.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/transpose.h"
#include <algorithm>
#include <cmath>
#include <numeric>
namespace fastdeploy {
namespace function {
template <typename T, typename Type>
static void FullSort(Type input_height, Type input_width, int input_dim,
const FDTensor* input, FDTensor* out, FDTensor* indices,
bool descending) {
out->Allocate(input->Shape(), input->Dtype());
indices->Allocate(input->Shape(), TypeToDataType<Type>::dtype);
T* t_out = reinterpret_cast<T*>(out->Data());
Type* t_indices = reinterpret_cast<Type*>(indices->Data());
for (Type i = 0; i < input_height; ++i) {
std::vector<std::pair<T, Type>> col_vec;
col_vec.reserve(input_width);
if (input_dim == 1) {
auto e_input = EigenVector<T>::Flatten(*input);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(j), j));
}
} else {
auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
for (Type j = 0; j < input_width; ++j) {
col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
}
}
std::sort(col_vec.begin(), col_vec.end(),
[&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
if (descending)
return (std::isnan(static_cast<double>(l.first)) &&
!std::isnan(static_cast<double>(r.first))) ||
(l.first > r.first);
else
return (!std::isnan(static_cast<double>(l.first)) &&
std::isnan(static_cast<double>(r.first))) ||
(l.first < r.first);
});
for (Type j = 0; j < input_width; ++j) {
t_out[i * input_width + j] = col_vec[j].first;
t_indices[i * input_width + j] = col_vec[j].second;
}
}
}
template <typename T>
void SortKernel(const FDTensor& x, FDTensor* out, FDTensor* indices,
FDDataType indices_type, bool descending, int axis) {
auto input_shape = x.Shape();
int rank = input_shape.size();
axis = (axis < 0) ? (rank + axis) : axis;
// Do full sort
if (axis == -1 || axis + 1 == rank) {
int64_t numel = x.Numel();
int64_t input_width = input_shape[axis];
int64_t input_height = numel / input_width;
FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
FullSort<T, data_t>(input_height, input_width, rank,
&x, out, indices, descending);
}));
} else {
// If not full sort do transpose
std::vector<int64_t> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(rank - 1);
for (int i = axis + 1; i < rank - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
FDTensor trans_inp;
Transpose(x, &trans_inp, trans);
int64_t numel = x.Numel();
int64_t input_width = input_shape[axis];
int64_t input_height = numel / input_width;
FD_VISIT_INT_TYPES(indices_type, "FullSort", ([&] {
FullSort<T, data_t>(input_height, input_width, rank,
&trans_inp, out, indices,
descending);
}));
// transpose back
Transpose(*out, out, trans);
Transpose(*indices, indices, trans);
}
}
void Sort(const FDTensor& x, FDTensor* out, FDTensor* indices, int axis,
bool descending, FDDataType indices_type) {
FD_VISIT_INT_FLOAT_TYPES(x.dtype, "SortKernel", ([&] {
SortKernel<data_t>(x, out, indices, indices_type,
descending, axis);
}));
}
} // namespace function
} // namespace fastdeploy