-
-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathrun_keras_cv_drivers.py
321 lines (261 loc) · 10.9 KB
/
run_keras_cv_drivers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: utf-8 -*-
import numpy as np
np.random.seed(2016)
import os
import glob
import cv2
import math
import pickle
import datetime
import pandas as pd
import statistics
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import KFold
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.models import model_from_json
from sklearn.metrics import log_loss
use_cache = 1
# color type: 1 - grey, 3 - rgb
color_type_global = 1
# color_type = 1 - gray
# color_type = 3 - RGB
def get_im(path, img_rows, img_cols, color_type=1):
# Load as grayscale
if color_type == 1:
img = cv2.imread(path, 0)
elif color_type == 3:
img = cv2.imread(path)
# Reduce size
resized = cv2.resize(img, (img_cols, img_rows))
return resized
def get_driver_data():
dr = dict()
path = os.path.join('..', 'input', 'driver_imgs_list.csv')
print('Read drivers data')
f = open(path, 'r')
line = f.readline()
while (1):
line = f.readline()
if line == '':
break
arr = line.strip().split(',')
dr[arr[2]] = arr[0]
f.close()
return dr
def load_train(img_rows, img_cols, color_type=1):
X_train = []
y_train = []
driver_id = []
driver_data = get_driver_data()
print('Read train images')
for j in range(10):
print('Load folder c{}'.format(j))
path = os.path.join('..', 'input', 'imgs', 'train', 'c' + str(j), '*.jpg')
files = glob.glob(path)
for fl in files:
flbase = os.path.basename(fl)
img = get_im(fl, img_rows, img_cols, color_type)
X_train.append(img)
y_train.append(j)
driver_id.append(driver_data[flbase])
unique_drivers = sorted(list(set(driver_id)))
print('Unique drivers: {}'.format(len(unique_drivers)))
print(unique_drivers)
return X_train, y_train, driver_id, unique_drivers
def load_test(img_rows, img_cols, color_type=1):
print('Read test images')
path = os.path.join('..', 'input', 'imgs', 'test', '*.jpg')
files = glob.glob(path)
X_test = []
X_test_id = []
total = 0
thr = math.floor(len(files)/10)
for fl in files:
flbase = os.path.basename(fl)
img = get_im(fl, img_rows, img_cols, color_type)
X_test.append(img)
X_test_id.append(flbase)
total += 1
if total%thr == 0:
print('Read {} images from {}'.format(total, len(files)))
return X_test, X_test_id
def cache_data(data, path):
if os.path.isdir(os.path.dirname(path)):
file = open(path, 'wb')
pickle.dump(data, file)
file.close()
else:
print('Directory doesnt exists')
def restore_data(path):
data = dict()
if os.path.isfile(path):
file = open(path, 'rb')
data = pickle.load(file)
return data
def save_model(model):
json_string = model.to_json()
if not os.path.isdir('cache'):
os.mkdir('cache')
open(os.path.join('cache', 'architecture.json'), 'w').write(json_string)
model.save_weights(os.path.join('cache', 'model_weights.h5'), overwrite=True)
def read_model():
model = model_from_json(open(os.path.join('cache', 'architecture.json')).read())
model.load_weights(os.path.join('cache', 'model_weights.h5'))
return model
def split_validation_set(train, target, test_size):
random_state = 51
X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=test_size, random_state=random_state)
return X_train, X_test, y_train, y_test
def create_submission(predictions, test_id, info):
result1 = pd.DataFrame(predictions, columns=['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9'])
result1.loc[:, 'img'] = pd.Series(test_id, index=result1.index)
now = datetime.datetime.now()
if not os.path.isdir('subm'):
os.mkdir('subm')
suffix = info + '_' + str(now.strftime("%Y-%m-%d-%H-%M"))
sub_file = os.path.join('subm', 'submission_' + suffix + '.csv')
result1.to_csv(sub_file, index=False)
def read_and_normalize_train_data(img_rows, img_cols, color_type=1):
cache_path = os.path.join('cache', 'train_r_' + str(img_rows) + '_c_' + str(img_cols) + '_t_' + str(color_type) + '.dat')
if not os.path.isfile(cache_path) or use_cache == 0:
train_data, train_target, driver_id, unique_drivers = load_train(img_rows, img_cols, color_type)
cache_data((train_data, train_target, driver_id, unique_drivers), cache_path)
else:
print('Restore train from cache!')
(train_data, train_target, driver_id, unique_drivers) = restore_data(cache_path)
train_data = np.array(train_data, dtype=np.uint8)
train_target = np.array(train_target, dtype=np.uint8)
if color_type == 1:
train_data = train_data.reshape(train_data.shape[0], 1, img_rows, img_cols)
else:
train_data = train_data.transpose((0, 3, 1, 2))
train_target = np_utils.to_categorical(train_target, 10)
train_data = train_data.astype('float32')
train_data /= 255
print('Train shape:', train_data.shape)
print(train_data.shape[0], 'train samples')
return train_data, train_target, driver_id, unique_drivers
def read_and_normalize_test_data(img_rows, img_cols, color_type=1):
cache_path = os.path.join('cache', 'test_r_' + str(img_rows) + '_c_' + str(img_cols) + '_t_' + str(color_type) + '.dat')
if not os.path.isfile(cache_path) or use_cache == 0:
test_data, test_id = load_test(img_rows, img_cols, color_type)
cache_data((test_data, test_id), cache_path)
else:
print('Restore test from cache!')
(test_data, test_id) = restore_data(cache_path)
test_data = np.array(test_data, dtype=np.uint8)
if color_type == 1:
test_data = test_data.reshape(test_data.shape[0], 1, img_rows, img_cols)
else:
test_data = test_data.transpose((0, 3, 1, 2))
test_data = test_data.astype('float32')
test_data /= 255
print('Test shape:', test_data.shape)
print(test_data.shape[0], 'test samples')
return test_data, test_id
def dict_to_list(d):
ret = []
for i in d.items():
ret.append(i[1])
return ret
def merge_several_folds_mean(data, nfolds):
a = np.array(data[0])
for i in range(1, nfolds):
a += np.array(data[i])
a /= nfolds
return a.tolist()
def merge_several_folds_geom(data, nfolds):
a = np.array(data[0])
for i in range(1, nfolds):
a *= np.array(data[i])
a = np.power(a, 1/nfolds)
return a.tolist()
def copy_selected_drivers(train_data, train_target, driver_id, driver_list):
data = []
target = []
index = []
for i in range(len(driver_id)):
if driver_id[i] in driver_list:
data.append(train_data[i])
target.append(train_target[i])
index.append(i)
data = np.array(data, dtype=np.float32)
target = np.array(target, dtype=np.float32)
index = np.array(index, dtype=np.uint32)
return data, target, index
def create_model_v1(img_rows, img_cols, color_type=1):
nb_classes = 10
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 3
model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(color_type, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adadelta')
return model
def run_cross_validation(nfolds=10):
# input image dimensions
img_rows, img_cols = 24, 32
batch_size = 32
nb_epoch = 1
random_state = 51
train_data, train_target, driver_id, unique_drivers = read_and_normalize_train_data(img_rows, img_cols, color_type_global)
test_data, test_id = read_and_normalize_test_data(img_rows, img_cols, color_type_global)
yfull_train = dict()
yfull_test = []
kf = KFold(len(unique_drivers), n_folds=nfolds, shuffle=True, random_state=random_state)
num_fold = 0
for train_drivers, test_drivers in kf:
unique_list_train = [unique_drivers[i] for i in train_drivers]
X_train, Y_train, train_index = copy_selected_drivers(train_data, train_target, driver_id, unique_list_train)
unique_list_valid = [unique_drivers[i] for i in test_drivers]
X_valid, Y_valid, test_index = copy_selected_drivers(train_data, train_target, driver_id, unique_list_valid)
num_fold += 1
print('Start KFold number {} from {}'.format(num_fold, nfolds))
print('Split train: ', len(X_train), len(Y_train))
print('Split valid: ', len(X_valid), len(Y_valid))
print('Train drivers: ', unique_list_train)
print('Test drivers: ', unique_list_valid)
model = create_model_v1(img_rows, img_cols, color_type_global)
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
show_accuracy=True, verbose=1, validation_data=(X_valid, Y_valid))
# score = model.evaluate(X_valid, Y_valid, show_accuracy=True, verbose=0)
# print('Score log_loss: ', score[0])
predictions_valid = model.predict(X_valid, batch_size=128, verbose=1)
score = log_loss(Y_valid, predictions_valid)
print('Score log_loss: ', score)
# Store valid predictions
for i in range(len(test_index)):
yfull_train[test_index[i]] = predictions_valid[i]
# Store test predictions
test_prediction = model.predict(test_data, batch_size=128, verbose=1)
yfull_test.append(test_prediction)
score = log_loss(train_target, dict_to_list(yfull_train))
print('Final log_loss: {}, rows: {} cols: {} nfolds: {} epoch: {}'.format(score, img_rows, img_cols, nfolds, nb_epoch))
info_string = 'loss_' + str(score) \
+ '_r_' + str(img_rows) \
+ '_c_' + str(img_cols) \
+ '_folds_' + str(nfolds) \
+ '_ep_' + str(nb_epoch)
test_res = merge_several_folds_mean(yfull_test, nfolds)
create_submission(test_res, test_id, info_string)
run_cross_validation(5)