-
Notifications
You must be signed in to change notification settings - Fork 20
/
pre_process.py
259 lines (231 loc) · 7.85 KB
/
pre_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import numpy as np
from torchvision import transforms
import os
from PIL import Image, ImageOps
import numbers
import torch
class ResizeImage():
def __init__(self, size):
if isinstance(size, int):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
th, tw = self.size
return img.resize((th, tw))
class RandomSizedCrop(object):
"""Crop the given PIL.Image to random size and aspect ratio.
A crop of random size of (0.08 to 1.0) of the original size and a random
aspect ratio of 3/4 to 4/3 of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: size of the smaller edge
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, interpolation=Image.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
h_off = random.randint(0, img.shape[1]-self.size)
w_off = random.randint(0, img.shape[2]-self.size)
img = img[:, h_off:h_off+self.size, w_off:w_off+self.size]
return img
class Normalize(object):
"""Normalize an tensor image with mean and standard deviation.
Given mean: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = channel - mean
Args:
mean (sequence): Sequence of means for R, G, B channels respecitvely.
"""
def __init__(self, mean=None, meanfile=None):
if mean:
self.mean = mean
else:
arr = np.load(meanfile)
self.mean = torch.from_numpy(arr.astype('float32')/255.0)[[2,1,0],:,:]
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
# TODO: make efficient
for t, m in zip(tensor, self.mean):
t.sub_(m)
return tensor
class PlaceCrop(object):
"""Crops the given PIL.Image at the particular index.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (w, h), a square crop (size, size) is
made.
"""
def __init__(self, size, start_x, start_y):
if isinstance(size, int):
self.size = (int(size), int(size))
else:
self.size = size
self.start_x = start_x
self.start_y = start_y
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
th, tw = self.size
return img.crop((self.start_x, self.start_y, self.start_x + tw, self.start_y + th))
class ForceFlip(object):
"""Horizontally flip the given PIL.Image randomly with a probability of 0.5."""
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
return img.transpose(Image.FLIP_LEFT_RIGHT)
class CenterCrop(object):
"""Crops the given PIL.Image at the center.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be cropped.
Returns:
PIL.Image: Cropped image.
"""
w, h = (img.shape[1], img.shape[2])
th, tw = self.size
w_off = int((w - tw) / 2.)
h_off = int((h - th) / 2.)
img = img[:, h_off:h_off+th, w_off:w_off+tw]
return img
def image_train(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
ResizeImage(resize_size),
transforms.RandomResizedCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
def image_test(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
start_first = 0
start_center = (resize_size - crop_size - 1) / 2
start_last = resize_size - crop_size - 1
return transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_center, start_center),
transforms.ToTensor(),
normalize
])
def image_test_10crop(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
start_first = 0
start_center = (resize_size - crop_size - 1) / 2
start_last = resize_size - crop_size - 1
data_transforms = [
transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_first, start_first),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_last, start_last),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_last, start_first),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_first, start_last),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),ForceFlip(),
PlaceCrop(crop_size, start_center, start_center),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_first, start_first),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_last, start_last),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_last, start_first),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_first, start_last),
transforms.ToTensor(),
normalize
]),
transforms.Compose([
ResizeImage(resize_size),
PlaceCrop(crop_size, start_center, start_center),
transforms.ToTensor(),
normalize
])
]
return data_transforms
def inv_preprocess(imgs, num_images=1):
"""Inverse preprocessing of the batch of images.
Args:
imgs: batch of input images.
num_images: number of images to apply the inverse transformations on.
img_mean: vector of mean colour values.
numpy_transform: whether change RGB to BGR during img_transform.
Returns:
The batch of the size num_images with the same spatial dimensions as the input.
"""
def norm_ip(img, min, max):
img.clamp_(min=min, max=max)
img.add_(-min).div_(max - min + 1e-5)
norm_ip(imgs, float(imgs.min()), float(imgs.max()))
return imgs